Cluster (spacecraft)


Cluster (spacecraft)
Cluster
Operator European Space Agency in international collaboration with NASA
Major contractors Dornier GmbH (now part of EADS)
Mission type Orbiter
Satellite of Earth
Launch date 16-Jul-2000 12:39 UT and 09-Aug-2000 11:13 UT
Launch vehicle Soyuz-FG/Fregat
Mission duration 11 years, 2 months and 10 days
COSPAR ID 2000-041A
Homepage http://sci.esa.int/cluster
Mass 1200 kg per satellite
Orbital elements
Inclination 90 deg (nominal)
Orbital period 57 h

Cluster is a space mission of the European Space Agency, with NASA participation, to study the Earth's magnetosphere over the course of an entire solar cycle. The mission is composed of four identical spacecraft flying in a tetrahedral formation. The four Cluster spacecraft were successfully launched by pair in July and August 2000 onboard two Soyuz-Fregat rockets from Baikonur. In February 2011, Cluster celebrated 10 years of successful scientific operations in space. The mission has been extended until December 2012. China National Space Administration/ESA Double Star mission operated alongside Cluster from 2003 to 2007.

Contents

Cluster mission overview

The four identical Cluster satellites study the impact of the Sun's activity on the Earth's space environment by flying in formation around Earth. For the first time in space history, this mission is able to collect three-dimensional information on how the solar wind interacts with the magnetosphere and affects near-Earth space and its atmosphere, including aurorae. The satellites are named Rumba, Salsa, Samba and Tango but are more commonly called Cluster 1, Cluster 2, Cluster 3 and Cluster 4 or even C1, C2, C3 and C4.

The spacecraft are cylindrical (290 x 130 cm, see online 3D model) and are spin-stabilized at 15 rotations per minute. After launch, their solar cells provided 224 watts power for instruments and communications. The four spacecraft maneuver into various tetrahedral formations to study the magnetospheric structure and boundaries. The inter-spacecraft distances can be varied from around 17 to 10,000 kilometers (km). The propellant for the maneuvers makes up approximately half of the spacecraft's launch weight.

The highly elliptical orbits of the spacecraft reach a perigee of around 4 RE (Earth radii, where 1 RE = 6371 km) and an apogee of 19.6 RE. Each orbit takes approximately 57 hours to complete. The European Space Operations Centre (ESOC) acquires telemetry and distributes to the online data centers the science data from the spacecraft.

History

The Cluster mission was proposed to ESA in 1982 and approved in 1986, along with the Solar and Heliospheric Observatory (SOHO). Though the original Cluster spacecraft were completed in 1995, the explosion of the Ariane 5 rocket carrying the satellites in 1996 (during Ariane 5 Flight 501) delayed the mission by four years while the instruments were rebuilt.

On July 16, 2000, a Soyuz-Fregat rocket from the Baikonur Cosmodrome launched two of the Clusters (Salsa and Samba) into a parking orbit from where they maneuvered under their own power into a 19,000 by 119,000 kilometer orbit with a period of 57 hours. Three weeks later on August 9, 2000 another Soyuz-Fregat rocket lifted the remaining two Cluster spacecraft (Rumba and Tango) into similar orbits. Spacecraft 1, Rumba, is also known as the Phoenix spacecraft, since it is largely built from spare parts left over after the failure of the original mission. After commissioning of the payload, the first scientific measurements were made on February 1, 2001.

The ESA ran a competition to name the Cluster satellites, which attracted participants from many countries. Ray Cotton from the United Kingdom won with the names Rumba, Tango, Salsa and Samba. Ray's town of residence, Bristol, was awarded with scale models of the satellites in recognition of the naming and connection with the satellites.

Originally planned to last until the end of 2003, the mission has been extended several times. The first extension took the mission from 2004 until 2005, and the second from 2005 to June 2009. The mission has now been extended until end 2012.

Scientific objectives

Previous single and two-spacecraft missions were not capable of providing the data required to accurately study the boundaries of the magnetosphere. Because the plasma comprising the magnetosphere cannot presently be accessed using remote sensing techniques, satellites must be used to measure it in-situ. Four spacecraft allow scientists make the 3D, time-resolved measurements needed to create a realistic picture of the complex plasma interactions occurring between regions of the magnetosphere and between the magnetosphere and the solar wind.

Each satellite carries a scientific payload of 11 instruments designed to study the small-scale plasma structures in space and time in the key plasma regions: solar wind, bow shock, magnetopause, polar cusps, magnetotail, plasmapause boundary layer and over the polar caps and the auroral zones.

  • The bow shock is the region in space between the Earth and the sun where the solar wind decelerates from super- to sub-sonic before being deflected around the Earth. In traversing this region, Cluster makes measurements which help characterize processes occurring at the bow shock, such as the origin of hot flow anomalies and the transmission of electromagnetic waves through the bow shock and the magnetosheath from the solar wind.
  • Behind the bow shock is the thin plasma layer separating the Earth and solar wind magnetic fields known as the magnetopause. This boundary moves continuously due to the constant variation in solar wind pressure. Since the plasma and magnetic pressures within the solar wind and the magnetosphere, respectively, should be in equilibrium, the magnetosphere should be an impenetrable boundary. However, plasma has been observed crossing the magnetopause into the magnetosphere from the solar wind. Cluster's four-point measurements make it possible to track the motion of the magnetopause as well as elucidate the mechanism for plasma penetration from the solar wind.
  • In two regions, one in the northern hemisphere and the other in the south, the magnetic field of the Earth is perpendicular rather than tangential to the magnetopause. These polar cusps allow solar wind particles, consisting of ions and electrons, to flow into the magnetosphere. Cluster records the particle distributions, which allow the turbulent regions at the exterior cusps to be characterized.
  • The regions of the Earth's magnetic field that are stretched by the solar wind away from the sun are known collectively as the magnetotail. Two lobes that reach past the Moon in length form the outer magnetotail while the central plasma sheet forms the inner magnetotail, which is highly active. Cluster monitors particles from the ionosphere and the solar wind as they pass through the magnetotail lobes. In the central plasma sheet, Cluster determines the origins of ion beams and disruptions to the magnetic field-aligned currents caused by substorms.
  • The precipitation of charged particles in the atmosphere creates a ring of light emission around the magnetic pole known as the auroral zone. Cluster measures the time variations of transient particle flows in the region.

Double Star mission with China

In 2003 and 2004, the China National Space Administration launched the Double Star satellites, TC-1 and TC-2, that worked together with Cluster to make coordinated measurements mostly within the magnetosphere. TC-1 stopped operating on 14 October 2007. Here are three scientific highlights where TC-1 played a crucial role

1. Space is Fizzy

Ion density holes were discovered near the Earth's bow shock that can play a role in bow shock formation. The bow shock is a critical region of space where the constant stream of solar material, the solar wind, is decelerated from supersonic speed to subsonic speed due to the internal magnetic field of the Earth. Full story: http://sci.esa.int/jump.cfm?oid=39559 Echo of this story on CNN: http://www.cnn.com/2006/TECH/space/06/20/space.bubbles/index.html

2. Inner magnetosphere and energetic particles

Chorus Emissions Found Further Away From Earth During High Geomagnetic Activity. Chorus are waves naturally generated in space close to the magnetic equator, within the Earth's magnetic bubble called magnetosphere. These waves play an important role in the creation of relativistic electrons and their precipitation from the Earth's radiation belts. These so called killer electrons can damage solar panels and electronic equipments of satellites and represent a hazard to astronauts. Therefore, information on their location with respect to the geomagnetic activity is of crucial importance to be able to forecast their impact. Chorus sound file: http://sci.esa.int/science-e/www/object/doc.cfm?fobjectid=38339

3. Magnetotail dynamics

Cluster and Double Star Reveal the Extent of Neutral Sheet Oscillations. For the first time, neutral sheet oscillations observed simultaneously at a distance of tens of thousands of kilometres are reported, thanks to observations by 5 satellites of the Cluster and the Double Star Program missions. This observational first provides further constraint to model this large-scale phenomenon in the magnetotail. Full story: http://sci.esa.int/jump.cfm?oid=38999

"The TC-1 satellite has demonstrated the mutual benefit of, and has fostered, scientific cooperation in space research between China and Europe. We expect even more results when the final archive of high resolution data will be made available to the worldwide scientific community", underlines Philippe Escoubet, Double Star and Cluster mission manager of the European Space Agency.

Discoveries and mission milestones

2011

2010

2009

2008

2007

2006

2005

2004

2003-2001

References

Selected publications

All 1926 publications related to the Cluster and the Double Star missions (count as of 31 October 2011) can be found on the publication section of the ESA Cluster mission website

  1. ^ Shay, M.A., et al. (2011). "Super-Alfvénic Propagation of Substorm Reconnection Signature and Poynting Flux". Physical Review Letters 107 (6): 065001. Bibcode 2011PhRvL.107f5001S. doi:10.1103/PhysRevLett.107.065001. 
  2. ^ Turner, A.J. et al. (2011). "Nonaxisymmetric Anisotropy of Solar Wind Turbulence". Physical Review Letters 107 (9): 095002. Bibcode 2011PhRvL.107i5002T. doi:10.1103/PhysRevLett.107.095002. 
  3. ^ Khotyaintsev, Y. et al. (2-11). "Plasma Jet Braking: Energy Dissipation and Nonadiabatic Electrons". Physical Review Letters 106 (16): 165001. Bibcode 2011PhRvL.106p5001K. doi:10.1103/PhysRevLett.106.165001. 
  4. ^ Marklund, G.T. et al. (2011). "Altitude distribution of the auroral acceleration potential determined from Cluster satellite data at different heights". Physical Review Letters 106 (5): 055002. Bibcode 2011PhRvL.106e5002M. doi:10.1103/PhysRevLett.106.055002. 
  5. ^ Echim, M. et al. (2011). "Comparative investigation of the terrestrial and Venusian magnetopause: Kinetic modeling and experimental observations by Cluster and Venus Express". Planet. Space Sci., in press. Bibcode 2011P&SS...59.1028E. doi:10.1016/j.pss.2010.04.019. http://www.sciencedirect.com/science/article/B6V6T-5017HNW-1/2/1c0920afbad19aa087ecd56ecdefb80b. 
  6. ^ Sahraoui, F. et al. (2010). "Three dimensional anisotropic k spectra of turbulence at subproton scales in the solar wind". Physical Review Letters 105 (13): 131101. Bibcode 2010PhRvL.105m1101S. doi:10.1103/PhysRevLett.105.131101. 
  7. ^ Masson, A., et al. (2011), "A Decade Revealing the Sun-Earth Connection in Three Dimensions", EOS Trans. 92 (1), http://www.agu.org/pubs/crossref/2011/2011EO010007.shtml 
  8. ^ Kistler, L.M. et al. (2010). "Cusp as a source for oxygen in the plasma sheet during geomagnetic storms". J. Geophys. Res. 115: A03209. Bibcode 2010JGRA..11503209K. doi:10.1029/2009JA014838. http://www.agu.org/pubs/crossref/2010/2009JA014838.shtml. 
  9. ^ Yuan, Z. et al. (2010). "Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites". Geophys. Res. Lett. 37 (7): L07108. Bibcode 2010GeoRL..3707108Y. doi:10.1029/2010GL042711. http://www.agu.org/pubs/crossref/2010/2010GL042711.shtml. 
  10. ^ Laakso, H. et al., ed (2010). The Cluster Active Archive - Studying the Earth's Space Plasma Environment. Astrophys. & Space Sci. Proc. series, Springer. pp. 1–489. http://www.springer.com/astronomy/extraterrestrial+physics%2C+space+sciences/book/978-90-481-3498-4. 
  11. ^ Hietala, H. et al. (2009). "Supermagnetosonic jets behind a collisionless quasiparallel shock". Physical Review Letters 103 (24): 245001. Bibcode 2009PhRvL.103x5001H. doi:10.1103/PhysRevLett.103.245001. 
  12. ^ Zong, Q.-G. et al. (2009). "Energetic electron response to ULF waves induced by interplanetary shocks in the outer radiation belt". Journal of Geophysical Research 114: A10204. Bibcode 2009JGRA..11410204Z. doi:10.1029/2009JA014393. http://www.agu.org/pubs/crossref/2009/2009JA014393.shtml. 
  13. ^ Dunlop, M. et al. (2009). "Reconnection at High Latitudes: Antiparallel Merging". Physical Review Letters 102 (7): 075005. Bibcode 2009PhRvL.102g5005D. doi:10.1103/PhysRevLett.102.075005. 
  14. ^ Sahraoui, F. et al. (2009). "Evidence of a cascade and dissipation of solar-wind turbulence at the electron gyroscale". Physical Review Letters 102 (23): 231102. Bibcode 2009PhRvL.102w1102S. doi:10.1103/PhysRevLett.102.231102. 
  15. ^ Dandouras, I. et al. (2009). "Magnetosphere response to the 2005 and 2006 extreme solar events as observed by the Cluster and Double Star spacecraft". Adv. Space Res. 43 (23): 618–623. Bibcode 2009AdSpR..43..618D. doi:10.1016/j.asr.2008.10.015. http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V3S-4TTHWGR-1&_user=10&_coverDate=02%2F16%2F2009&_rdoc=1&_fmt=high&_orig=gateway&_origin=gateway&_sort=d&_docanchor=&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=393e1a7972dd07cf91706c7d4da5d317&searchtype=a. 
  16. ^ Yordanova, E. et al. (2008). "Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft". Physical Review Letters 100 (20): 205003. Bibcode 2008PhRvL.100t5003Y. doi:10.1103/PhysRevLett.100.205003. 
  17. ^ Engwall, E. et al. (2009). "Magnetosheath plasma turbulence and its spatiotemporal evolution as observed by the Cluster spacecraft". Nature Geosci. 2 (1): 24–27. Bibcode 2009NatGe...2...24E. doi:10.1038/ngeo387. http://www.nature.com/ngeo/journal/v2/n1/full/ngeo387.html. 
  18. ^ Eastwood, J. et al. (2008). "The science of space weather". Phil. Trans. R. Soc. A 366 (1884): 4489–4500. Bibcode 2008RSPTA.366.4489E. doi:10.1098/rsta.2008.0161. PMID 18812302. http://rsta.royalsocietypublishing.org/content/366/1884/4489.abstract. 
  19. ^ Kronberg, E. et al. (2008). "Comparison of periodic substorms at Jupiter and Earth". J. Geophys. Res. 113: A04212. http://www.agu.org/pubs/crossref/2008/2007JA012880.shtml. 
  20. ^ Nilsson, H. et al. (2008). "An assessment of the role of the centrifugal acceleration mechanism in high altitude polar cap oxygen ion outflow". Ann. Geophs. 26: 145–157. Bibcode 2008AnGeo..26..145N. doi:10.5194/angeo-26-145-2008. http://www.ann-geophys.net/26/145/2008/angeo-26-145-2008.pdf. 
  21. ^ He, J.-S. et al. (2008). "Electron trapping around a magnetic null". Geophys. Res. Lett. 35 (14): L14104. Bibcode 2008GeoRL..3514104H. doi:10.1029/2008GL034085. http://www.agu.org/pubs/crossref/2008/2008GL034085.shtml. 
  22. ^ He, J.-S. et al. (2008). "A magnetic null geometry reconstructed from Cluster spacecraft observations". J. Geophys. Res. 113: A05205. http://www.agu.org/pubs/crossref/2008/2007JA012609.shtml. 
  23. ^ Mutel, R.L. et al. (2008). "Cluster multispacecraft determination of AKR angular beaming". Geophys. Res. Lett. 35 (7): L07104. Bibcode 2008GeoRL..3507104M. doi:10.1029/2008GL033377. http://www.agu.org/pubs/crossref/2008/2008GL033377.shtml. 
  24. ^ Wei, X.H. et al. (2007). "Cluster observations of waves in the whistler frequency range associated with magnetic reconnection in the Earth’s magnetotail". J. Geophys. Res. 112: A10225. http://www.agu.org/pubs/crossref/2007/2006JA011771.shtml. 
  25. ^ Trines, R. et al. (2007). "Spontaneous Generation of Self-Organized Solitary Wave Structures at Earth's Magnetopause". Physical Review Letters 99 (20): 205006. Bibcode 2007PhRvL..99t5006T. doi:10.1103/PhysRevLett.99.205006. 
  26. ^ Phan, T. et al. (2007). "Evidence for an Elongated (>60 Ion Skin Depths) Electron Diffusion Region during Fast Magnetic Reconnection". Physical Review Letters 99 (25): 255002. Bibcode 2007PhRvL..99y5002P. doi:10.1103/PhysRevLett.99.255002. 
  27. ^ Grigorenko, E.E. et al. (2007). "Spatial-Temporal characteristics of ion beamlets in the plasma sheet boundary layer of magnetotail". J. Geophys. Res. 112 (A5): A05218. http://www.agu.org/pubs/crossref/2007/2006JA011986.shtml. 
  28. ^ Lavraud, B. et al. (2007). "Strong bulk plasma acceleration in Earth's magnetosheath: A magnetic slingshot effect?". Geophys. Res. Lett. 34 (14): L14102. Bibcode 2007GeoRL..3414102L. doi:10.1029/2007GL030024. http://www.agu.org/pubs/crossref/2007/2007GL030024.shtml. 
  29. ^ Rosenqvist, L.et al.; Kullen, A.; Buchert, S. (2007). "An unusual giant spiral arc in the polar cap region during the northward phase of a Coronal Mass Ejection". Ann. Geophys. 25 (2): 507–517. Bibcode 2007AnGeo..25..507R. doi:10.5194/angeo-25-507-2007. http://www.ann-geophys.net/25/507/2007/angeo-25-507-2007.pdf. 
  30. ^ Lui, A.T.Y. et al. (2007). "Breakdown of the frozen-in condition in the Earth's magnetotail". J. Geophys. Res. 112 (A4): A04215. http://www.agu.org/pubs/crossref/2007/2006JA012000.shtml. 
  31. ^ Haaland, S.E.et al.; Paschmann, G.; Förster, M.; Quinn, J. M.; Torbert, R. B.; McIlwain, C. E.; Vaith, H.; Puhl-Quinn, P. A. et al. (2007). "High-latitude plasma convection from Cluster EDI measurements: method and IMF-dependence". Ann. Geophys. 25 (1): 239–253. Bibcode 2007AnGeo..25..239H. doi:10.5194/angeo-25-239-2007. http://www.ann-geophys.net/25/239/2007/angeo-25-239-2007.pdf. 
  32. ^ Förster, M. et al. (2007). "High-latitude plasma convection from Cluster EDI: variances and solar wind correlations". Ann. Geophys. 25 (7): 1691–1707. Bibcode 2007AnGeo..25.1691F. doi:10.5194/angeo-25-1691-2007. http://www.ann-geophys.net/25/1691/2007/angeo-25-1691-2007.pdf. 
  33. ^ Sergeev, V. et al. (2007). "Strong bulk plasma acceleration in Earth's magnetosheath: A magnetic slingshot effect?". Geophys. Res. Lett. 34: L02103. doi:10.1029/2006GL028452. http://www.agu.org/pubs/crossref/2007/2006GL028452.shtml. 
  34. ^ Rae, J. et al. (2005). "Evolution and characteristics of global Pc5 ULF waves during a high solar wind speed interval". J. Geophys. Res. 110: A12211. http://www.agu.org/pubs/crossref/2005/2005JA011007.shtml. 
  35. ^ Zong, Q.-G. et al. (2007). "Ultralow frequency modulation of energetic particles in the dayside magnetosphere". Geophys. Res. Lett. 34 (12): L12105. Bibcode 2007GeoRL..3412105Z. doi:10.1029/2007GL029915. http://www.agu.org/pubs/crossref/2007/2007GL029915.shtml. 
  36. ^ Xiao,C.J. et al.. "Satellite observations of separator-line geometry of three-dimensional magnetic reconnection". Nature Phys. 3 (9): 603–607. Bibcode 2007NatPh...3..609X. doi:10.1038/nphys650. http://www.nature.com/nphys/journal/v3/n9/full/nphys650.html. 
  37. ^ Lobzin, V.V. et al. (2007). "Ultralow frequency modulation of energetic particles in the dayside magnetosphere". Geophys. Res. Lett. 34 (5): L05107. Bibcode 2007GeoRL..3405107L. doi:10.1029/2006GL029095. http://www.agu.org/pubs/crossref/2007/2006GL029095.shtml. 
  38. ^ Lui, A.T.Y.et al.; Zheng, Y.; Zhang, Y.; Livi, S.; Rème, H.; Dunlop, M. W.; Gustafsson, G.; Mende, S. B. et al. (2006). "Cluster observation of plasma flow reversal in the magnetotail during a substorm". Ann. Geophys. 24 (7): 2005–2013. Bibcode 2006AnGeo..24.2005L. doi:10.5194/angeo-24-2005-2006. http://www.ann-geophys.net/24/2005/2006/angeo-24-2005-2006.pdf. 
  39. ^ Retinò, A. et al. (2007). "In situ evidence of magnetic reconnection in turbulent plasma". Nature Phys. 3 (4): 236–238. Bibcode 2007NatPh...3..236R. doi:10.1038/nphys574. http://www.nature.com/nphys/journal/v3/n4/abs/nphys574.html. 
  40. ^ Henderson, P. et al. (2006). "Cluster PEACE observations of electron pressure tensor divergence in the magnetotail". Geophys. Res. Lett. 33 (22): L22106. Bibcode 2006GeoRL..3322106H. doi:10.1029/2006GL027868. http://www.agu.org/journals/ABS/2006/2006GL027868.shtml. 
  41. ^ Marklund, G. et al. (2007). "Cluster observations of an auroral potential and associated field-aligned current reconfiguration during thinning of the plasma sheet boundary layer". J. Geophys. Res. 112 (A1). http://www.agu.org/journals/ABS/2007/2006JA011804.shtml. 
  42. ^ Nykyri,K. et al.; Otto, A.; Lavraud, B.; Mouikis, C.; Kistler, L.&Nbsp;M.; Balogh, A.; Rème, H. (2006). "Cluster observations of reconnection due to the Kelvin-Helmholtz instability at the dawnside magnetospheric flank". Ann. Geophys. 24 (10): 2619–2643. Bibcode 2006AnGeo..24.2619N. doi:10.5194/angeo-24-2619-2006. http://www.ann-geophys.net/24/2619/2006/angeo-24-2619-2006.pdf. 
  43. ^ Darrouzet, F. et al. (2006). "Spatial gradients in the plasmasphere from Cluster". Geophys. Res. Lett. 33 (8): L08105. Bibcode 2006GeoRL..3308105D. doi:10.1029/2006GL025727. http://www.agu.org/pubs/crossref/2006/2006GL025727.shtml. 
  44. ^ Darrouzet, F. et al. (2006). "Analysis of plasmaspheric plumes: CLUSTER and IMAGE observations". Ann. Geophys. 24 (6): 1737–1758. Bibcode 2006AnGeo..24.1737D. doi:10.5194/angeo-24-1737-2006. http://www.ann-geophys.net/24/1737/2006/angeo-24-1737-2006.pdf. 
  45. ^ Marchaudon, A. et al. (2005). "Simultaneous Double Star and Cluster FTEs observations on the dawnside flank of the magnetosphere". Ann. Geophys. 23 (8): 2877–2887. Bibcode 2005AnGeo..23.2877M. doi:10.5194/angeo-23-2877-2005. http://www.ann-geophys.net/23/2877/2005/angeo-23-2877-2005.pdf. 
  46. ^ Cao, J.B. et al. (2006). "Joint observations by Cluster satellites of bursty bulk flows in the magnetotail". J. Geophys. Res. 111: A04206. http://www.agu.org/pubs/crossref/2006/2005JA011322.shtml. 
  47. ^ Xiao, C.J. et al. (2006). "In situ evidence for the structure of the magnetic null in a 3D reconnection event in the Earth's magnetotail". Nature Phys. 2 (7): 478–483. arXiv:physics/0606014. Bibcode 2006NatPh...2..478X. doi:10.1038/nphys342. http://www.nature.com/nphys/journal/v2/n7/full/nphys342.html. 
  48. ^ Parks, G. et al. (2006). "Larmor radius size density holes discovered in the solar wind upstream of Earth's bow shock". Phys. Plasmas 13: 050701. http://pop.aip.org/resource/1/phpaen/v13/i5/p050701_s1?. 
  49. ^ Mozer, F. et al. (2005). "Spatial gradients in the plasmasphere from Cluster". Geophys. Res. Lett. 32 (24): L24102. Bibcode 2005GeoRL..3224102M. doi:10.1029/2005GL024092. http://www.agu.org/pubs/crossref/2005/2005GL024092.shtml. 
  50. ^ Zhang, T.L.. et al. (2005). "Double Star/Cluster observation of neutral sheet oscillations on 5 August 2004". Ann. Geophys. 23 (8): 2909–2914. Bibcode 2005AnGeo..23.2909Z. doi:10.5194/angeo-23-2909-2005. http://www.ann-geophys.net/23/2909/2005/angeo-23-2909-2005.pdf. 
  51. ^ Sahraoui, F. et al. (2006). "Anisotropic turbulent spectra in the terrestrial magnetosheath: Cluster observations". Physical Review Letters 96 (7): 075002. Bibcode 2006PhRvL..96g5002S. doi:10.1103/PhysRevLett.96.075002. 
  52. ^ Phan, T. et al. (2006). "A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind". Nature 439 (7073): 175–178. Bibcode 2006Natur.439..175P. doi:10.1038/nature04393. PMID 16407946. http://www.nature.com/nature/journal/v439/n7073/full/nature04393.html. 
  53. ^ Horne, R.B. et al. (2005). "Wave acceleration of electrons in the Van Allen radiation belts". Nature 437 (7056): 227–230. Bibcode 2005Natur.437..227H. doi:10.1038/nature03939. PMID 16148927. http://www.nature.com/nature/journal/v437/n7056/abs/nature03939.html. 
  54. ^ Schwartz, S. et al. (2005). "A γ-ray giant flare from SGR1806-20: evidence for crustal cracking via initial timescales". ApJ 627 (2): L129–L132. arXiv:astro-ph/0504056. Bibcode 2005ApJ...627L.129S. doi:10.1086/432374. http://iopscience.iop.org/1538-4357/627/2/L129/pdf/1538-4357_627_2_L129.pdf. 
  55. ^ Sundkvist, D. et al. (2005). "In situ multi-satellite detection of coherent vortices as a manifestation of Alfvénic turbulence". Nature 436 (7052): 825–828. Bibcode 2005Natur.436..825S. doi:10.1038/nature03931. PMID 16094363. http://www.nature.com/nature/journal/v436/n7052/abs/nature03931.html. 
  56. ^ Vallat, C. et al. (2005). "First current density measurements in the ring current region using simultaneous multi-spacecraft CLUSTER-FGM data". Ann. Geophys. 23 (5): 1849–1865. Bibcode 2005AnGeo..23.1849V. doi:10.5194/angeo-23-1849-2005. http://www.ann-geophys.net/23/1849/2005/angeo-23-1849-2005.pdf. 
  57. ^ Øieroset, M., et al. (2005). "Global cooling and densification of the plasma sheet during an extended period of purely northward IMF on October 22–24, 2003". Geophys. Res. Lett. 32: L12S07. Bibcode 2005GeoRL..3212S07O. doi:10.1029/2004GL021523. http://www.agu.org/journals/ABS/2005/2004GL021523.shtml. 
  58. ^ Li, W., et al. (2005). "Plasma sheet formation during long period of northward IMF". Geophys. Res. Lett. 32: L12S08. Bibcode 2005GeoRL..3212S08L. doi:10.1029/2004GL021524. http://www.agu.org/journals/ABS/2005/2004GL021524.shtml. 
  59. ^ Louarn, P., et al. (2004). "Cluster observations of complex 3D magnetic structures at the magnetopause". Geophys. Res. Lett. 31 (19): L19805. Bibcode 2004GeoRL..3119805L. doi:10.1029/2004GL020625. http://www.agu.org/journals/ABS/2004/2004GL020625.shtml. 
  60. ^ Nakamura, R. et al. (2004). "Spatial scale of high-speed flows in the plasma sheet observed by Cluster". Geophys. Res. Lett. 31 (9): L09804. Bibcode 2004GeoRL..3109804N. doi:10.1029/2004GL019558. http://www.agu.org/pubs/crossref/2004/2004GL019558.shtml. 
  61. ^ Knetter, T. et al. (2004). "Four-point discontinuity observations using Cluster magnetic field data: A statistical survey". J. Geophys. Res. 109: A06102. http://www.agu.org/journals/ABS/2004/2003JA010099.shtml. 
  62. ^ Décréau, P. et al. (2004). "Observation of continuum radiations from the Cluster fleet: first results from direction finding". Ann. Geophys. 22 (7): 2607–2624. Bibcode 2004AnGeo..22.2607D. doi:10.5194/angeo-22-2607-2004. http://www.ann-geophys.net/22/2607/2004/angeo-22-2607-2004.pdf. 
  63. ^ Décréau, P. et al. (2004). "Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin–Helmholtz vortices". Nature 430 (7001): 755–758. Bibcode 2004Natur.430..755H. doi:10.1038/nature02799. PMID 15306802. http://www.nature.com/nature/journal/v430/n7001/abs/nature02799.html. 
  64. ^ Sergeev, V. et al. (2004). "Orientation and propagation of current sheet oscillations". Geophys. Res. Lett. 31 (5): L05807. Bibcode 2004GeoRL..3105807S. doi:10.1029/2003GL019346. http://www.agu.org/journals/ABS/2004/2003GL019346.shtml. 
  65. ^ Zong, Q.-G. et al. (2004). "Triple cusps observed by Cluster-Temporal or spatial effect?". Geophys. Res. Lett. 31 (9): L09810. Bibcode 2004GeoRL..3109810Z. doi:10.1029/2003GL019128. http://www.agu.org/journals/ABS/2004/2003GL019128.shtml. 
  66. ^ Bale, S. et al. (2003). "Density-Transition Scale at Quasiperpendicular Collisionless Shocks". Physical Review Letters 91 (26): 265004. Bibcode 2003PhRvL..91z5004B. doi:10.1103/PhysRevLett.91.265004. 
  67. ^ Frey, H. et al. (2003). "Continuous magnetic reconnection at Earth's magnetopause". Nature 426 (6966): 533–537. Bibcode 2003Natur.426..533F. doi:10.1038/nature02084. PMID 14654835. http://www.nature.com/nature/journal/v426/n6966/full/nature02084.html. 
  68. ^ Runov, A. et al. (2003). "Current sheet structure near magnetic X-line observed by Cluster". Geophys. Res. Lett. 30 (10). Bibcode 2003GeoRL..30k..33R. doi:10.1029/2002GL016730. http://www.agu.org/journals/ABS/2003/2002GL016730.shtml. 
  69. ^ Phan, T. et al. (2003). "Simultaneous Cluster and IMAGE Observations of Cusp Reconnection and Auroral Spot for Northward IMF". Geophys. Res. Lett. 30 (10). Bibcode 2003GeoRL..30j..16P. doi:10.1029/2003GL016885. http://www.agu.org/journals/ABS/2004/2003GL019128.shtml. 
  70. ^ Runov, A. et al. (2003). "Cluster observation of a bifurcated current sheet". Geophys. Res. Lett. 30 (2): 1036. Bibcode 2003GeoRL..30b...8R. doi:10.1029/2002GL016136. http://www.agu.org/journals/ABS/2003/2002GL016136.shtml. 
  71. ^ Dunlop, M. et al. (2002). "Four-point Cluster application of magnetic field analysis tools: The Curlometer". J. Geophys. Res. 107: 1384. Bibcode 2002JGRA..107.1384D. doi:10.1029/2001JA005088. http://www.agu.org/journals/ABS/2002/2001JA005088.shtml. 
  72. ^ Nakamura, R. et al. (2002). "Fast flow during current sheet thinning". Geophys. Res. Lett. 29 (23): 2140. Bibcode 2002GeoRL..29w..55N. doi:10.1029/2002GL016200. http://www.agu.org/journals/ABS/2002/2002GL016200.shtml. 
  73. ^ Baker, D.N. et al. (2002). "A telescopic and microscopic view of a magnetospheric substorm on 31 March 2001". Geophys. Res. Lett. 29 (18): 1862. Bibcode 2002GeoRL..29r...9B. doi:10.1029/2001GL014491. http://www.agu.org/journals/ABS/2002/2001GL014491.shtml. 
  74. ^ Marklund, G. et al. (2001). "Fast flow during current sheet thinning". Nature 414 (6865): 724–727. Bibcode 2001Natur.414..724M. doi:10.1038/414724a. PMID 11742392. http://www.nature.com/nature/journal/v414/n6865/abs/414724a.html. 
  75. ^ Décréau, P. et al. (2001). "Fast flow during current sheet thinning". Ann. Geophys. 19: 1241–1258. http://www.ann-geophys.net/19/1241/2001/angeo-19-1241-2001.pdf. 

Instrumentation on each Cluster satellite

Number Acronym Instrument Measurement Purpose
1 ASPOC Active Spacecraft Potential Control experiment Regulation of spacecraft's electrostatic potential Enables the measure by PEACE of cold electrons (a few eV temperature), otherwise hidden by spacecraft photoelectrons
2 CIS Cluster Ion Spectroscopy experiment Ion times-of-flight (TOFs) and energies from 0 to 40 keV Composition and 3D distribution of ions in plasma
3 DWP Digital Wave Processing instrument Coordinates the operations of the EFW, STAFF, WBD and WHISPER instruments. At the lowest level, DWP provides electrical signals to synchronise instrument sampling. At the highest level, DWP enables more complex operational modes by means of macros.
4 EDI Electron Drift Instrument Electric field E magnitude and direction E vector, gradients in local magnetic field B
5 EFW Electric Field and Wave experiment Electric field E magnitude and direction E vector, spacecraft potential, electron density and temperature
6 FGM Fluxgate Magnetometer Magnetic field B magnitude and direction B vector and event trigger to all instruments except ASPOC
7 PEACE Plasma Electron and Current Experiment Electron energies from 0.0007 to 30 keV 3D distribution of electrons in plasma
8 RAPID Research with Adaptive Particle Imaging Detectors Electron energies from 30 to 1500 keV, ion energies from 20 to 450 keV 3D distributions of high-energy electrons and ions in plasma
9 STAFF Spatio-Temporal Analysis of Field Fluctuation experiment Magnetic field B magnitude and direction of EM fluctuations, cross-correlation of E and B Properties of small-scale current structures, source of plasma waves and turbulence
10 WBD Wide Band Data receiver Electric field E waveforms and spectrograms of terrestrial plasma waves and radio emissions Motion of terrestrial fluctuations, e.g. auroral kilometric radiation
11 WHISPER Waves of High Frequency and Sounder for Probing of Density by Relaxation Electric field E spectrograms of terrestrial plasma waves and radio emissions in the 2–80 kHz range; triggering of plasma resonances by an active sounder. Source location of waves by triangulation; electron density within the range 0.2–80 cm−3

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Cluster mission — The Cluster mission is an European Space Agency (ESA) unmanned space mission to study the Earth s magnetosphere using four identical spacecraft flying in a tetrahedral formation. The first four Cluster spacecraft were lost in the Ariane 5 flight… …   Wikipedia

  • Cluster (Satellit) — Cluster ist ein Satellitenprojekt der ESA und NASA zur Erforschung der irdischen Magnetosphäre. Es erlitt 1996 einen Rückschlag beim Fehlstart der ersten Ariane 5 Rakete, ist aber seit Sommer 2000 mit Reservesatelliten in Betrieb. Es besteht aus… …   Deutsch Wikipedia

  • Spacecraft — Spaceship redirects here. For other uses, see Spaceship (disambiguation). More than 100 Russian Soyuz manned spacecraft (TMA version shown) have flown since 1967, originally for a Soviet manned lunar program, but currently supporting the… …   Wikipedia

  • Spacecraft in the Honorverse — This article is about the different types of spacecraft which appear in the Honorverse, a series of military science fiction novels written by American author David Weber, which feature Honor Harrington as its main character. Introduction The… …   Wikipedia

  • Fractionated spacecraft — A fractionated spacecraft is a satellite architecture where the functional capabilities of a conventional monolithic spacecraft are distributed across multiple modules which interact through wireless links. Unlike other aggregations of spacecraft …   Wikipedia

  • Don Quijote (spacecraft) — For other uses, see Don Quixote (disambiguation). Don Quixote Operator European Space Agency Bus Modified SMART 1[1] Mission type Orbiter, Impactor, and Lander …   Wikipedia

  • Darwin (spacecraft) — Darwin General information Organization European Space Agency (ESA) Launched from Guiana Space Centre French Guiana [1] Launch vehicle Soyuz 2/Fregat …   Wikipedia

  • Mission Cluster — Pour les articles homonymes, voir Cluster. Cluster est une mission de l Agence spatiale européenne (ESA) qui utilise quatre satellites chargés d étudier les interactions entre le vent solaire et la magnétosphère terrestre. Après la destruction… …   Wikipédia en Français

  • Euclid (spacecraft) — Euclid General information Organization ESA Launch date 2019 Mission length 5 years (planned) Location Lagrangian point L2 Telescope style Korsch …   Wikipedia

  • Marco Polo (spacecraft) — Marco Polo is a European Japanese space mission aimed at visiting a small primitive asteroid and returning a sample to Earth for analysis in laboratory. It has been proposed to the program Cosmic Vision 2015 2025 of the European Space Agency… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.