Dévissage

Dévissage

In algebraic geometry, dévissage is a technique introduced by Alexander Grothendieck for proving statements about coherent sheaves on noetherian schemes. Dévissage is an adaptation of a certain kind of noetherian induction. It has many applications, including the proof of generic flatness and the proof that higher direct images of coherent sheaves under proper morphisms are coherent.

Laurent Gruson and Michel Raynaud extended this concept to the relative situation, that is, to the situation where the scheme under consideration is not necessarily noetherian, but instead admits a finitely presented morphism to another scheme. They did this by defining an object called a relative dévissage which is well-suited to certain kinds of inductive arguments. They used this technique to give a new criterion for a module to be flat. As a consequence, they were able to simplify and generalize the results of EGA IV 11 on descent of flatness.[1]

The word dévissage is French for unscrewing.

Contents

Grothendieck's dévissage theorem

Let X be a noetherian scheme. Let C be a full abelian subcategory of the category of coherent OX-modules, and let X′ be a closed subspace of the underlying topological space of X. Suppose that for every point x of X′, there exists a coherent sheaf G in C whose fiber at x is a one-dimensional vector space over the residue field k(x). Then every coherent OX-module whose support is contained in X′ is contained in C.[2]

In the particular case that X′ = X, the theorem says that C is the category of OX-modules. This is the setting in which the theorem is most often applied, but the statement above makes it possible to prove the theorem by noetherian induction.

A variation on the theorem is that if every direct factor of an object in C is again in C, then the condition that the fiber of G at x be one-dimensional can be replaced by the condition that the fiber is non-empty.[3]

Gruson and Raynaud's relative dévissages

Suppose that f : XS is a finitely presented morphism of affine schemes, s is a point of S, and M is a finite type OX-module. If n is a natural number, then Gruson and Raynaud define an S-dévissage in dimension n to consist of:

  1. A closed finitely presented subscheme X′ of X containing the closed subscheme defined by the annihilator of M and such that the dimension of X′ ∩ f−1(s) is less than or equal to n.
  2. A scheme T and a factorization X′ → TS of the restriction of f to X′ such that X′ → T is a finite morphism and TS is an smooth affine morphism with geometrically integral fibers of dimension n. Denote the generic point of T ×S k(s) by τ and the pushforward of M to T by N.
  3. A free finite type OT-module L and a homomorphism α : LN such that α ⊗ k(τ) is bijective.

If n1, n2, ..., nr is a strictly decreasing sequence of natural numbers, then an S-dévissage in dimensions n1, n2, ..., nr is defined recursively as:

  1. An S-dévissage in dimension n1. Denote the cokernel of α by P1.
  2. An S-dévissage in dimensions n2, ..., nr of P1.

The dévissage is said to lie between dimensions n1 and nr. r is called the length of the dévissage. The last step of the recursion consists of a dévissage in dimension nr which includes a morphism αr : LrNr. Denote the cokernel of this morphism by Pr. The dévissage is called total if Pr is zero.[4]

Gruson and Raynaud prove in wide generality that locally, dévissages always exist. Specifically, let f : (X, x) → (S, s) be a finitely presented morphism of pointed schemes and M be an OX-module of finite type whose fiber at x is non-zero. Set n equal to the dimension of Mk(s) and r to the codepth of M at s, that is, to n − depth(Mk(s)).[5] Then there exist affine étale neighborhoods X′ of x and S′ of s, together with points x′ and s′ lifting x and s, such that the residue field extensions k(x) → k(x′) and k(s) → k(s′) are trivial, the map X′ → S factors through S′, this factorization sends x′ to s′, and that the pullback of M to X′ admits a total S′-dévissage at x′ in dimensions between n and nr.

References

  1. ^ Gruson & Raynaud 1971, p. 1
  2. ^ EGA III, Théorème 3.1.2
  3. ^ EGA III, Corollaire 3.1.3
  4. ^ Gruson & Raynaud 1971, pp. 7–8
  5. ^ EGA 0IV, Définition 16.4.9

Bibliography


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • dévissage — [ devisaʒ ] n. m. • 1870; de dévisser 1 ♦ Action de dévisser. Outil qui facilite le dévissage des couvercles. 2 ♦ Alpin. Le fait de dévisser, de tomber. ● dévissage nom masculin Action de dévisser. dévissage n. m. Opération qui consiste à… …   Encyclopédie Universelle

  • dévisser — [ devise ] v. <conjug. : 1> • 1768; de dé et visser 1 ♦ V. tr. Défaire (ce qui est vissé). Dévisser le bouchon d un tube, le couvercle d un bocal, par ext. un tube, un bocal. Fam. Dévisser son billard. 2 ♦ V. intr. Lâcher prise et tomber… …   Encyclopédie Universelle

  • FORAGES — On appelle forage l’ensemble des opérations permettant le creusement de trous généralement verticaux. L’utilisation principale des forages est la reconnaissance et l’exploitation des gisements de pétrole ou de gaz naturel. Les autres utilisations …   Encyclopédie Universelle

  • List of algebraic geometry topics — This is a list of algebraic geometry topics, by Wikipedia page. Contents 1 Classical topics in projective geometry 2 Algebraic curves 3 Algebraic surfaces 4 …   Wikipedia

  • Arthrite de Lyme — Maladie de Lyme Maladie de Lyme Classification et ressources externes CIM 10 A69.2 (ou A69.2+ pour Méningite (basilaire) (cérébrale) (spinale) (à) au cours de maladie de Lyme) CIM 9 088.81 La maladie de Lyme est une maladie parasitaire. Elle est… …   Wikipédia en Français

  • Borréliose de Lyme — Maladie de Lyme Maladie de Lyme Classification et ressources externes CIM 10 A69.2 (ou A69.2+ pour Méningite (basilaire) (cérébrale) (spinale) (à) au cours de maladie de Lyme) CIM 9 088.81 La maladie de Lyme est une maladie parasitaire. Elle est… …   Wikipédia en Français

  • Catégorie des groupes — Groupe (mathématiques) Pour les articles homonymes, voir Groupe.  Cet article concerne une introduction au concept de groupe. Pour un approfondissement, voir théorie des groupes …   Wikipédia en Français

  • Critiques contre les véhicules utilitaires sport — Les critiques contre les véhicules utilitaires sport (ou SUV, pour « Sport Utility Vehicle »), sont l expression par différents groupes de personnes, de la désapprobation de l utilisation de ce type de véhicule pour un usage civil. Ces… …   Wikipédia en Français

  • Extracteur —  Ne doit pas être confondu avec Diffuseur (automobile). L extracteur (nom générique) est un outil mécanique, et de mécanique, servant à extraire divers types de mécanismes. Articulé, il peut être, un arrache rotule, un arrache moyeu, un… …   Wikipédia en Français

  • Fixation Des Rails Aux Traverses — Il existe plusieurs systèmes permettant la fixation du rail sur les traverses. Ces systèmes varient en fonction du type de traverses, du type de rail, du mode de pose de la voie (LRS ou barres normales), mais aussi en fonction de l histoire… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”