Neutron monitor


Neutron monitor

A neutron monitor is a ground-based detector designed to measure the number of high-energy charged particles striking the Earth's atmosphere from outer space. For historical reasons the incoming particles are called "cosmic rays", but in fact they are particles, predominantly protons and Helium nuclei. Most of the time, a neutron monitor records galactic cosmic rays and their variation with the 11-year sunspot cycle and 22-year magnetic cycle. Occasionally the Sun emits cosmic rays of sufficient energy and intensity to raise radiation levels on Earth's surface to the degree that they are readily detected by neutron monitors. They are termed "Ground Level Enhancements" (GLE).

The neutron monitor was invented by University of Chicago Professor John A. Simpson in 1948.[1] The "18-tube" NM64 monitor, which today is the international standard, is a large instrument weighing about 36 tons.

Contents

How it works

Atmospheric cascades

When a high-energy particle from outer space ("primary" cosmic ray) encounters Earth, its first interaction is usually with an air molecule at an altitude of 30 km or so. This encounter causes the air molecule to split into smaller pieces, each having high energy. The smaller pieces are called "secondary" cosmic rays, and they in turn hit other air molecules resulting in more secondary cosmic rays. The process continues and is termed an "atmospheric cascade". If the primary cosmic ray that started the cascade has energy over 500 MeV, some of its secondary byproducts (including neutrons) will reach ground level where they can be detected by neutron monitors.

Measurement strategy

Since they were invented by Prof. Simpson in 1948 there have been various types of neutron monitors. Notable are the "IGY-type" monitors deployed around the world during the 1957 International Geophysical Year (IGY) and the much larger "NM64" monitors (also known as "supermonitors"). All neutron monitors however employ the same measurement strategy that exploits the dramatic difference in the way high and low energy neutrons interact with different nuclei. (There is almost no interaction between neutrons and electrons.) High energy neutrons interact rarely but when they do they are able to disrupt nuclei, particularly heavy nuclei, producing many low energy neutrons in the process. Low energy neutrons have a much higher probability of interacting with nuclei, but these interactions are typically elastic (like billiard ball collisions) that transfer energy but do not change the structure of the nucleus. The exceptions to this are a few specific nuclei (most notably 10B and 3He) that quickly absorb extremely low energy neutrons, then disintegrate releasing very energetic charged particles. With this behavior of neutron interactions in mind, Professor Simpson ingeniously selected the four main components of a neutron monitor:

  1. Reflector. An outer shell of proton-rich material – paraffin in the early neutron monitors, polyethylene in the more modern ones. Low energy neutrons cannot penetrate this material, but are not absorbed by it. Thus environmental, non-cosmic ray induced neutrons are kept out of the monitor and low energy neutrons generated in the lead are kept in. This material is largely transparent to the cosmic ray induced cascade neutrons.
  2. Producer. The producer is lead, and by weight it is the major component of a neutron monitor. Fast neutrons that get through the reflector interact with the lead to produce, on average about 10 much lower energy neutrons. This both amplifies the cosmic signal and produces neutrons that cannot easily escape the reflector.
  3. Moderator. The moderator, also a proton rich material like the reflector, slows down the neutrons now confined within the reflector, which makes them more likely to be detected.
  4. Proportional Counter. This is the heart of a neutron monitor. After very slow neutrons are generated by the reflector, producer, moderator, and so forth, they encounter a nucleus in the proportional counter and cause it to disintegrate. This nuclear reaction produces energetic charged particles that ionize gas in the proportional counter, producing an electrical signal. In the early Simpson monitors, the active component in the gas was 10B, which produced a signal via the reaction (n + 10B → α + 7Li). Recent proportional counters use the reaction (n + 3He → 3H + p) which yields 764 keV.

What it measures

Neutron monitors measure by proxy the intensity of cosmic rays striking the Earth, and its variation with time. These variations occur on many different time scales (and are still a subject of research). The three listed below are examples:

Solar cycles

In a process termed “solar modulation” the Sun and solar wind alter the intensity and energy spectrum of Galactic cosmic rays that enter the solar system. When the Sun is active, fewer Galactic cosmic rays reach Earth than during times when the Sun is quiet. For this reason, Galactic cosmic rays follow an 11-year cycle like the Sun, but in the opposite direction: High solar activity corresponds to low cosmic rays, and vice versa.

Forbush decreases

Occasionally the Sun expels an enormous quantity of mass and energy in a "Coronal Mass Ejection" (CME). As this matter moves through the solar system, it suppresses the intensity of Galactic cosmic rays. The suppression was first reported by Scott Forbush[2] and hence is termed a "Forbush decrease".

Ground level enhancements

Approximately 10-15 times per decade, the Sun emits particles of sufficient energy and intensity to raise radiation levels on Earth's surface. The largest of these events, termed a "Ground Level Enhancement", (GLE) was observed on February 23, 1956.[3]

Neutron monitor arrays

In the early days of neutron monitoring, discoveries could be made with a monitor at a single location. However, the scientific yield of neutron monitors is greatly enhanced when data from numerous monitors are analyzed in concert.[4] Modern applications frequently employ extensive arrays of monitors. In effect the observing instrument is not any isolated instrument, but rather the array. Networking neutron monitors yields new information in several areas, among them:

  1. Anisotropy: Neutron monitor stations at different locations around the globe view different directions in space. By combining data from these stations, the anisotropy of cosmic rays can be determined.
  2. Energy Spectrum: Earth’s magnetic field repels cosmic rays more strongly in equatorial regions than in polar regions. By comparing data from stations located at different latitudes, the energy spectrum can be determined.
  3. Relativistic Solar Neutrons: These are very rare events recorded by stations near Earth’s equator that face the Sun. The information they provide is unique because neutrally charged particles (like neutrons) travel through space unaffected by magnetic fields in space. A relativistic solar neutron event was first reported for a 1982 event.[5]

References

  1. ^ Simpson, J. A. (2000). "The cosmic ray nucleonic component: The invention and scientific uses of the neutron monitor". Space Science Reviews 93 (1/2): 11–32. Bibcode 2000SSRv...93...11S. doi:10.1023/A:1026567706183. 
  2. ^ Forbush, S. E. (1937). "On the effects in cosmic-ray intensity observed during the recent magnetic storm". Physical Review 51 (12): 1108–1109. Bibcode 1937PhRv...51.1108F. doi:10.1103/PhysRev.51.1108.3. 
  3. ^ Meyer, P.; Parker, E. N.; Simpson, J. A. (1956). "Solar cosmic rays of February, 1956 and their propagation through interplanetary space". Physical Review 104 (3): 768–783. Bibcode 1956PhRv..104..768M. doi:10.1103/PhysRev.104.768. 
  4. ^ Moraal, H.; Belov, A.; Clem, J. M. (2000). "Design and coordination of multi-station international neutron monitor networks". Space Science Reviews 93 (1–2): 285–303. Bibcode 2000SSRv...93..285M. doi:10.1023/A:1026504814360. 
  5. ^ Chupp, E. L.; et al. (1987). "Solar neutron emissivity during the large flare on 1982 June 3". The Astrophysical Journal 318: 913–925. Bibcode 1987ApJ...318..913C. doi:10.1086/165423. 

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Real-time Neutron Monitor Database — The Real time Neutron Monitor Database (or NMDB) is a worldwide network of standardized neutron monitors, used to record variations of the primary cosmic rays. The measurements complement space based cosmic ray measurements. Unlike data from… …   Wikipedia

  • Neutron detection — is the effective detection of neutrons entering a well positioned detector. There are two key aspects to effective neutron detection: hardware and software. Detection hardware refers to the kind of neutron detector used (the most common today is… …   Wikipedia

  • List of Jimmy Neutron characters — This is a list of characters in the American television animated series The Adventures of Jimmy Neutron: Boy Genius. Contents 1 Main characters 1.1 Jimmy Neutron 1.2 Carl Wheezer 1.3 …   Wikipedia

  • Fast neutron therapy — Intervention ICD 10 PCS D?0?5ZZ ICD 9: 92.26 Fast neutron therapy utilizes high energy neutrons typically greater than 20 MeV …   Wikipedia

  • Boron neutron capture therapy — Intervention A schematic of therapy facility in Otaniemi, Finland. ICD 10 PCS D?0?6ZZ …   Wikipedia

  • List of The Adventures of Jimmy Neutron: Boy Genius episodes — The following is a list of all The Adventures of Jimmy Neutron: Boy Genius episodes. Contents 1 Series Overview 2 Season 0: 1998 3 Film: 2001 4 Season 1: 2002–2003 …   Wikipedia

  • Spaceship Earth (detector) — Spaceship Earth is a network of neutron monitors designed to measure the flux of cosmic rays arriving at Earth from different directions. [cite journal |last=Bieber |first=John W. |coauthors=et al. |title=Spaceship Earth Observations of the… …   Wikipedia

  • Cosmic ray — For the film, see Cosmic Ray (film). Cosmic radiation redirects here. For some background types of cosmic radiation, see cosmic background radiation and cosmic background. The energy spectrum for cosmic rays Cosmic rays are energetic charged… …   Wikipedia

  • List of radio propagation topics — This is a list of radio propagation terms. NOTOC A a index A index aa index active prominence active prominence region (APR) active region active surge region (ASR) active dark filament (ADF) AE index Air Force Geophysics Laboratory (AFGL) arch… …   Wikipedia

  • DNM — • Delayed Neutron Monitor Reaktortechnik ( > IEEE Standard Dictionary ) • Datennetzabschlussmodul …   Acronyms


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.