Adequate equivalence relation

Adequate equivalence relation

In algebraic geometry, a branch of mathematics, an adequate equivalence relation is an equivalence relation on algebraic cycles of smooth projective varieties used to obtain a well-working theory of such cycles, and in particular, well-defined intersection products. Samuel formalized the concept of an adequate equivalence relation in 1958.[1] Since then it has become central to theory of motives. For every adequate equivalence relation, one may define the category of pure motives with respect to that relation.

Possible (and useful) adequate equivalence relations include rational, algebraic, homological and numerical equivalence. They are called "adequate" because dividing out by the equivalence relation is functorial, i.e. push-forward (with change of co-dimension) and pull-back of cycles is well-defined. Codimension one cycles modulo rational equivalence form the classical group of divisors. All cycles modulo rational equivalence form the Chow ring.

Contents

Definition

Let Z*(X) := Z[X] be the free abelian group on the algebraic cycles of X. Then an adequate equivalence relation is a family of equivalence relations, X on Z*(X), one for each smooth projective variety X, satisfying the following three conditions:

  1. (Linearity) The equivalence relation is compatible with addition of cycles.
  2. (Moving lemma) If \alpha, \beta \in Z^{*}(X) are cycles on X, then there exists a cycle \alpha' \in Z^{*}(X) such that α ~X α' and α' intersects β properly.
  3. (Push-forwards) Let \alpha \in Z^{*}(X) and \beta \in Z^{*}(X \times Y) be cycles such that β intersects \alpha \times Y properly. If α ~X 0, then (\pi_Y)_{*}(\beta \cdot (\alpha \times Y)) ~Y 0, where \pi_Y : X \times Y \to Y is the projection.

The push-forward cycle in the last axiom is often denoted

\beta(\alpha) := (\pi_Y)_{*}(\beta \cdot (\alpha \times Y))

If β is the graph of a function, then this reduces to the push-forward of the function. The generalizations of functions from X to Y to cycles on X × Y are known as correspondences. The last axiom allows us to push forward cycles by a correspondence.

Examples of equivalence relations

The most common equivalence relations, listed from strongest to weakest, are gathered below in a table.

definition remarks
rational equivalence Z ∼rat Z' if there is a cycle V on X × P1 flat over P1, such that V ∩ X × {0} = Z and

V ∩ X × {∞} = Z' .

the finest adequate equivalence relation. "∩" denotes intersection in the cycle-theoretic sense (i.e. with multiplicities). see also Chow ring
algebraic equivalence Z ∼alg Z' if there is a curve C and a cycle V on X × C flat over C, such that V ∩ X × {c} = Z and

V ∩ X × {d} = Z' for two points c and d on the curve.

strictly stronger than homological equivalence, see also Néron–Severi group
smash-nilpotence equivalence Z ∼sn Z' if Z - Z' is smash-nilpotent on X, that is, if (Z-Z')^{\otimes n} rat 0 on Xn for n >> 0. introduced by Voevodsky in 1995.[2]
homological equivalence for a given Weil cohomology H, Z ∼hom Z' if the image of the cycles under the cycle class map agrees depends a priori of the choice of H, but does not assuming the standard conjecture D
numerical equivalence Z ∼num Z' if Z ∩ T = Z' ∩ T, where T is any cycle such that dim T = codim Z (so that the intersection is a linear combination of points) the coarsest equivalence relation

Notes

  1. ^ Samuel, C. (1960), "Relations d'équivalence en géométrie algébrique", Proc. ICM 1958 (Cambridge Univ. Press): 470–487 
  2. ^ Voevodsky, V. (1995), "A nilpotence theorem for cycles algebraically equivalent to 0", Int. Math. Res. Notices 4: 1–12 

References

  • Kleiman, Steven L. (1972), "Motives", in Oort, F., Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer-School in Math., Oslo, 1970), Groningen: Wolters-Noordhoff, pp. 53–82, MR0382267 
  • Jannsen, U. (2000), "Equivalence relations on algebraic cycles", The Arithmetic and Geometry of Algebraic Cycles, NATO, 200 (Kluwer Ac. Publ. Co.): 225–260 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Binary relation — Relation (mathematics) redirects here. For a more general notion of relation, see Finitary relation. For a more combinatorial viewpoint, see Theory of relations. In mathematics, a binary relation on a set A is a collection of ordered pairs of… …   Wikipedia

  • Motive (algebraic geometry) — For other uses, see Motive (disambiguation). In algebraic geometry, a motive (or sometimes motif, following French usage) denotes some essential part of an algebraic variety . To date, pure motives have been defined, while conjectural mixed… …   Wikipedia

  • set theory — the branch of mathematics that deals with relations between sets. [1940 45] * * * Branch of mathematics that deals with the properties of sets. It is most valuable as applied to other areas of mathematics, which borrow from and adapt its… …   Universalium

  • formal logic — the branch of logic concerned exclusively with the principles of deductive reasoning and with the form rather than the content of propositions. [1855 60] * * * Introduction       the abstract study of propositions, statements, or assertively used …   Universalium

  • applied logic — Introduction       the study of the practical art of right reasoning. The formalism (formal logic) and theoretical results of pure logic can be clothed with meanings derived from a variety of sources within philosophy as well as from other… …   Universalium

  • Inverse semigroup — In mathematics, an inverse semigroup S is a semigroup in which every element x in S has a unique inverse y in S in the sense that x = xyx and y = yxy. Inverse semigroups appear in a range of contexts; for example, they can be employed in the… …   Wikipedia

  • Manifold — For other uses, see Manifold (disambiguation). The sphere (surface of a ball) is a two dimensional manifold since it can be represented by a collection of two dimensional maps. In mathematics (specifically in differential geometry and topology),… …   Wikipedia

  • Prewellordering — In set theory, a prewellordering is a binary relation that is transitive, wellfounded, and total. In other words, if leq is a prewellordering on a set X, and if we define sim by:xsim yiff xleq y land yleq xthen sim is an equivalence relation on X …   Wikipedia

  • BIBLE — THE CANON, TEXT, AND EDITIONS canon general titles the canon the significance of the canon the process of canonization contents and titles of the books the tripartite canon …   Encyclopedia of Judaism

  • Info-gap decision theory — is a non probabilistic decision theory that seeks to optimize robustness to failure – or opportuneness for windfall – under severe uncertainty,[1][2] in particular applying sensitivity analysis of the stability radius type[3] to perturbations in… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”