Organobromine compound


Organobromine compound

Organobromine compounds are organic compounds that contain carbon bonded to bromine. The most pervasive is the naturally produced bromomethane. One prominent application is the use of polybrominated diphenyl ethers as fire-retardants. A variety of minor organobromine compounds are found in nature, but none are biosynthesized or required by mammals. Organobromine compounds have fallen under increased scrutiny for their environmental impact.

Contents

General properties

Most organobromine compounds, like most organohalide compounds, are relatively nonpolar. Bromine is more electronegative than carbon (2.8 vs 2.5). Consequently, the carbon in a carbon–bromine bond is electrophilic, i.e. alkyl bromides are alkylating agents.

Carbon–halogen bond strengths, or bond dissociation energies are of 115, 83.7, 72.1, and 57.6 kcal/mol for bonded to fluorine, chlorine, bromine, or iodine, respectively.[1]

The reactivity of organobromine compounds resembles but is intermediate between the reactivity of organochlorine and organoiodine compounds. For many applications, organobromides represent a compromise of reactivity and cost. The principal reactions for organobromides include dehydrobromination, Grignard reactions, reductive coupling, and nucleophilic substitution.

Synthetic methods

From bromine

Alkenes reliably add bromine without catalysis to give the vicinal dibromides:

RCH=CH2 + Br2 → RCHBrCH2Br

Aromatic compounds undergo bromination simultaneously with evolution of hydrogen bromide. The reaction details following the usual patterns of electrophilic aromatic substitution:

RC6H5 + Br2 → RC6H4Br + HBr

A prominent application of this reaction is the production of tetrabromobisphenol-A from bisphenol-A.

Free-radical substitution with bromine is commonly used to prepare organobromine compounds. Carbonyl-containing, benzylic, allylic substrates are especially prone to this reactions. For example, the commercially significant bromoacetic acid is generated directly from acetic acid and bromine in the presence of phosphorus tribromide catalyst:

CH3CO2H + Br2 → BrCH2CO2H + HBr

Bromine also converts fluoroform to bromotrifluoromethane.

From hydrogen bromide

Hydrogen bromide adds across double bonds to give alkyl bromides, following the Markovnikov rule:

RCH=CH2 + HBr → RCHBrCH3

Under free radical conditions, the direction of the addition can be reversed. Free-radical addition is used commercially for the synthesis of 1-bromoalkanes, precursors to tertiary amines and quaternary ammonium salts. 2-Phenethyl bromide (C6H5CH2CH2Br) is produced via this route from styrene.

Hydrogen bromide can also be used to convert alcohols to alkyl bromides. This reaction is employed in the industrial synthesis of allyl bromide:

HOCH2CH=CH2 + HBr → BrCH2CH=CH2 + H2O

Methyl bromide, another fumigant, is generated from methanol and hydrogen bromide.

From bromide salts

Bromide ions, as provided by salts like sodium bromide, function as a nucleophiles in the formation of organobromine compounds by displacement.[2]

Industrially significant organobromine compounds

Structure of three industrially significant organobromine compounds. From left: ethylene bromide, bromoacetic acid, and tetrabromobisphenol-A.

Fire-retardants

Organobromine compounds are widely used as fire-retardants.[3] The most prominent member is tetrabromobisphenol-A (4,4'-(1-methylethylidene)bis-(2,6-di-bromophenol, see figure). It and tetrabromophthalic anhydride are precursors to polymers wherein the backbone features covalent carbon-bromine bonds. Other fire retardants, such as hexabromocyclododecane and the bromodiphenyl ethers, are additives and are not chemically attached to the material they protect. The use of organobromine fire-retardants is growing but is also controversial because they are persistent pollutants.

Fumigants and biocides

Ethylene bromide, obtained by addition of bromine to ethylene, was once of commercial significance as a component of leaded gasoline. It was also a popular fumigant in agriculture, displacing 1,2-dibromo-3-chloropropane ("DBCB"). Both applications are declining owing to environmental and health considerations. Methyl bromide is also an effective fumigant, but its production and use are controlled by the Montreal Protocol. Growing in use are organobromine biocides used in water treatment. Representative agents include bromoform and dibromodimethylhydantoin (“DBDMH”).[3]

Dyes

Many dyes contain carbon-bromine bonds. The naturally occurring Tyrian purple (6,6’-dibromoindigo) was a valued dye before the development of the synthetic dye industry in the late 19th century. Several brominated anthroquinone derivatives are used commercially. Bromothymol blue is a popular indicator in analytical chemistry.

Pharmaceuticals

Commercially available organobromine pharmaceuticals include the vasodialator nicergoline, the sedative brotizolam, and the anticancer agent pipobroman. Otherwise, organobromine compounds are rarely pharmaceutically useful, in contrast to the situation for organofluorine compounds. Several drugs are produced as the bromide (or equivalents, hydrobromide) salts, but in such cases bromide serves as an innocuous counterion of no biological significance.[3]

Organobromine compounds in nature

Organobromine compounds are the most common organohalides in nature. Even though the concentration of bromide is only 0.3% of that for chloride in sea water, organobromine compounds are more prevalent in marine organisms than organochlorine derivatives. Their abundance reflects the easy oxidation of bromide to the equivalent of Br+, a potent electrophile. The enzyme bromoperoxidase catalyzes this reaction.[4] The oceans are estimated to release 1–2 million tons of bromomethane annually.[5] Some edible algae contain 80% by weight bromoform (CHBr3). Some of these organobromine compounds are employed in a form of interspecies "chemical warfare." Only one organobromine compound is found in humans.[6]

Structure of naturally-occurring organobromine compounds. From left: bromoform, a brominated bisphenol, dibromoindigo (“Royal Purple”), and the antifeedant tambjamine B.

In addition to conventional brominated natural products, a variety of organobromine compounds result from the biodegradation of fire-retardants. Metabolites include methoxylated and hydroxylated aryl bromides as well as brominated dioxin derivatives. Such compounds are considered persistent organic pollutants and have been found in mammals.

Safety

Alkyl bromine compounds are often alkylating agents and the brominated aromatic derivatives are implicated as hormone disruptors. Of the commonly produced compounds, ethylene dibromide is of greatest concern as it is both highly toxic and highly carcinogenic.

See also

References

  1. ^ Blanksby SJ, Ellison GB (April 2003). "Bond dissociation energies of organic molecules". Acc. Chem. Res. 36 (4): 255–63. doi:10.1021/ar020230d. PMID 12693923. 
  2. ^ James S. Nowick, Guido Lutterbach, “Sodium Bromide” in Encyclopedia of Reagents for Organic Synthesis John Wiley & Sons, 2001. doi:10.1002/047084289X.rs054
  3. ^ a b c David Ioffe, Arieh Kampf “Bromine, Organic Compounds” in Kirk-Othmer Encyclopedia of Chemical Technology 2002 by John Wiley & Sons. doi: 10.1002/0471238961.0218151325150606.a01.
  4. ^ Jayme N. Carter-Franklin, Alison Butler “Vanadium Bromoperoxidase-Catalyzed Biosynthesis of Halogenated Marine Natural Products” Journal of the American Chemical Society 2004, volume 126, 15060-15066. doi:10.1021/ja047925p
  5. ^ Gordon W. Gribble “The diversity of naturally occurring organobromine compounds” Chemical Society Reviews, 1999, volume 28, pages 335 – 346.doi:10.1039/a900201d
  6. ^ Gordon W. Gribble (1998). "Naturally Occurring Organohalogen Compounds". Acc. Chem. Res. 31 (3): 141–152. doi:10.1021/ar9701777. 

References

CH He
CLi CBe CB CC CN CO CF Ne
CNa CMg CAl CSi CP CS CCl CAr
CK CCa CSc CTi CV CCr CMn CFe CCo CNi CCu CZn CGa CGe CAs CSe CBr CKr
CRb CSr CY CZr CNb CMo CTc CRu CRh CPd CAg CCd CIn CSn CSb CTe CI CXe
CCs CBa CHf CTa CW CRe COs CIr CPt CAu CHg CTl CPb CBi CPo CAt Rn
Fr Ra Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Uuq Uup Uuh Uus Uuo
CLa CCe CPr CNd CPm CSm CEu CGd CTb CDy CHo CEr CTm CYb CLu
Ac Th Pa CU Np Pu Am Cm Bk Cf Es Fm Md No Lr
Chemical bonds to carbon
Core organic chemistry Many uses in chemistry
Academic research, but no widespread use Bond unknown / not assessed

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • organobromine — 1. adjective Describing an organic compound containing one or more bromine atoms. 2. noun An organic compound containing bromine. See Also: organohalogen …   Wiktionary

  • Organozinc compound — Organozinc compounds in organic chemistry contain carbon to zinc chemical bonds. Organozinc chemistry is the science of organozinc compounds describing their physical properties, synthesis and reactions.[1][2][3] …   Wikipedia

  • Organoiodine compound — Organoiodine compounds are organic compounds that contain one or more carbon–iodine bonds. They occur widely in organic chemistry, but are relatively rare in nature. The thyroxine hormones are organoiodine compounds that are required for health… …   Wikipedia

  • Bromine — (pronEng|ˈbroʊmiːn/, /ˈbroʊmaɪn/, /ˈbroʊmɪn, el. βρῶμος, brómos , meaning stench (of he goats) Gemoll W, Vretska K: Griechisch Deutsches Schul und Handwörterbuch ( Greek German dictionary ), 9th ed., published by [http://www.oebvhpt.at/ öbvhpt] …   Wikipedia

  • Bromomethane — IUPAC name …   Wikipedia

  • Dioxins and dioxin-like compounds — (DLC)[1] are by products of various industrial processes, and are commonly regarded as highly toxic compounds that are environmental pollutants and persistent organic pollutants (POPs).[2] They include:[1][3] Polychlorinated dibenzo p dioxins… …   Wikipedia

  • Zinc — This article is about the metallic element. For other uses, see Zinc (disambiguation). copper ← zinc → gallium ↑ Zn ↓ Cd …   Wikipedia

  • Organochloride — Two representations of the organochloride chloroform. An organochloride, organochlorine, chlorocarbon, chlorinated hydrocarbon, or chlorinated solvent is an organic compound …   Wikipedia

  • organohalogen — 1. adjective Describing an organic compound containing one or more halogen atoms. 2. noun An organic compound containing a halogen. See Also: organofluorine, organobromine, organochlorine …   Wiktionary


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.