Isotopes of molybdenum

Isotopes of molybdenum

There are 33 known isotopes of molybdenum (Mo) ranging in atomic mass from 83 to 115, as well as four metastable nuclear isomers. Seven isotopes occur naturally, with atomic masses of 92, 94, 95, 96, 97, 98, and 100. Of these naturally occurring isotopes, six (all but 100Mo) have never been observed to decay, but all are theoretically capable of radioactive decay. All unstable isotopes of molybdenum decay into isotopes of zirconium, niobium, technetium, and ruthenium.[1]

Molybdenum-100 is the only naturally occurring isotope which is not stable. Molybdenum-100 has a half-life of approximately 1×1019 y and undergoes double beta decay into ruthenium-100. Molybdenum-98 is the most common isotope, comprising 24.14% of all molybdenum on Earth. Molybdenum isotopes with mass numbers 111 and up all have half-lives of approximately .15 μs.[1]

Standard atomic mass: 95.96(2) u

Contents

Table

nuclide
symbol
Z(p) N(n)  
isotopic mass (u)
 
half-life[n 1] decay
mode(s)[2][n 2]
daughter
isotope(s)[n 3]
nuclear
spin
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
excitation energy
83Mo 42 41 82.94874(54)# 23(19) ms
[6(+30-3) ms]
β+ 83Nb 3/2-#
β+, p 82Zr
84Mo 42 42 83.94009(43)# 3.8(9) ms
[3.7(+10-8) s]
β+ 84Nb 0+
85Mo 42 43 84.93655(30)# 3.2(2) s β+ 85Nb (1/2-)#
86Mo 42 44 85.93070(47) 19.6(11) s β+ 86Nb 0+
87Mo 42 45 86.92733(24) 14.05(23) s β+ (85%) 87Nb 7/2+#
β+, p (15%) 86Zr
88Mo 42 46 87.921953(22) 8.0(2) min β+ 88Nb 0+
89Mo 42 47 88.919480(17) 2.11(10) min β+ 89Nb (9/2+)
89mMo 387.5(2) keV 190(15) ms IT 89Mo (1/2-)
90Mo 42 48 89.913937(7) 5.56(9) h β+ 90Nb 0+
90mMo 2874.73(15) keV 1.12(5) µs 8+#
91Mo 42 49 90.911750(12) 15.49(1) min β+ 91Nb 9/2+
91mMo 653.01(9) keV 64.6(6) s IT (50.1%) 91Mo 1/2-
β+ (49.9%) 91Nb
92Mo 42 50 91.906811(4) Observationally Stable[n 4] 0+ 0.1477(31)
92mMo 2760.46(16) keV 190(3) ns 8+
93Mo 42 51 92.906813(4) 4,000(800) a EC 93Nb 5/2+
93mMo 2424.89(3) keV 6.85(7) h IT (99.88%) 93Mo 21/2+
β+ (.12%) 93Nb
94Mo 42 52 93.9050883(21) Observationally Stable[n 5] 0+ 0.0923(10)
95Mo[n 6] 42 53 94.9058421(21) Observationally Stable[n 5] 5/2+ 0.1590(9)
96Mo 42 54 95.9046795(21) Observationally Stable[n 5] 0+ 0.1668(1)
97Mo[n 6] 42 55 96.9060215(21) Observationally Stable[n 5] 5/2+ 0.0956(5)
98Mo[n 6] 42 56 97.9054082(21) Observationally Stable[n 7] 0+ 0.2419(26)
99Mo[n 6][n 8] 42 57 98.9077119(21) 2.7489(6) d β- 99mTc 1/2+
99m1Mo 97.785(3) keV 15.5(2) µs 5/2+
99m2Mo 684.5(4) keV 0.76(6) µs 11/2-
100Mo[n 9][n 6] 42 58 99.907477(6) 8.5(5)×1018 a β-β- 100Ru 0+ 0.0967(20)
101Mo 42 59 100.910347(6) 14.61(3) min β- 101Tc 1/2+
102Mo 42 60 101.910297(22) 11.3(2) min β- 102Tc 0+
103Mo 42 61 102.91321(7) 67.5(15) s β- 103Tc (3/2+)
104Mo 42 62 103.91376(6) 60(2) s β- 104Tc 0+
105Mo 42 63 104.91697(8) 35.6(16) s β- 105Tc (5/2-)
106Mo 42 64 105.918137(19) 8.73(12) s β- 106Tc 0+
107Mo 42 65 106.92169(17) 3.5(5) s β- 107Tc (7/2-)
107mMo 66.3(2) keV 470(30) ns (5/2-)
108Mo 42 66 107.92345(21)# 1.09(2) s β- 108Tc 0+
109Mo 42 67 108.92781(32)# 0.53(6) s β- 109Tc (7/2-)#
110Mo 42 68 109.92973(43)# 0.27(1) s β- (>99.9%) 110Tc 0+
β-, n (<.1%) 109Tc
111Mo 42 69 110.93441(43)# 200# ms
[>300 ns]
β- 111Tc
112Mo 42 70 111.93684(64)# 150# ms
[>300 ns]
β- 112Tc 0+
113Mo 42 71 112.94188(64)# 100# ms
[>300 ns]
β- 113Tc
114Mo 42 72 113.94492(75)# 80# ms
[>300 ns]
0+
115Mo 42 73 114.95029(86)# 60# ms
[>300 ns]
  1. ^ Bold for isotopes with half-lives longer than the age of the universe (nearly stable)
  2. ^ Abbreviations:
    EC: Electron capture
    IT: Isomeric transition
  3. ^ Bold for stable isotopes
  4. ^ Believed to decay by β+β+ to 92Zr with a half-life over 190×1018 years
  5. ^ a b c d Believed to be capable of spontaneous fission
  6. ^ a b c d e Fission product
  7. ^ Believed to decay by β-β- to 98Ru with a half-life of over 100×1012 years
  8. ^ Used to produce the medically-useful radioisotope technetium-99m
  9. ^ Primordial radionuclide

Applications

Molybdenum-99 is produced commercially by intense neutron-bombardment of a highly purified uranium-235 target, followed rapidly by extraction.[3] It is used as a parent radioisotope in technetium-99m generators to produce the even shorter-lived daughter isotope technetium-99m, which is used in many medical procedures.

Notes

  • Geologically exceptional samples are known in which the isotopic composition lies outside the reported range. The uncertainty in the atomic mass may exceed the stated value for such specimens.
  • Values marked # are not purely derived from experimental data, but at least partly from systematic trends. Spins with weak assignment arguments are enclosed in parentheses.
  • Uncertainties are given in concise form in parentheses after the corresponding last digits. Uncertainty values denote one standard deviation, except isotopic composition and standard atomic mass from IUPAC which use expanded uncertainties.

References

  1. ^ a b D. R. Lide, ed (2006). CRC Handbook of Chemistry and Physics. 11. CRC Press. pp. 87–88. ISBN 0-8493-0487-3. 
  2. ^ http://www.nucleonica.net/unc.aspx
  3. ^ Frank N. Von Hippel, Laura H. Kahn (December 2006). "Feasibility of Eliminating the Use of Highly Enriched Uranium in the Production of Medical Radioisotopes". Science & Global Security 14 (2 & 3): 151–162. doi:10.1080/08929880600993071. http://www.informaworld.com/smpp/content~content=a769414426~db=all. Retrieved 2010-03-26. 
Isotopes of niobium Isotopes of molybdenum Isotopes of technetium
Index to isotope pages · Table of nuclides

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Molybdenum — niobium ← molybdenum → technetium Cr ↑ Mo ↓ W …   Wikipedia

  • Isotopes of niobium — Naturally occurring niobium (Nb), element 41, is composed of one stable isotope (93Nb). 93Nb is the lightest nuclide theoretically susceptible to spontaneous fission, and although this has never been observed, it makes niobium theoretically the… …   Wikipedia

  • molybdenum — Symbol: Mo Atomic number: 42 Atomic weight: 95.94 Silvery white, hard metallic transition element. It is chemically unreactive and is not affected by most acids. It oxidizes at high temperatures. There are seven natural isotopes, and four… …   Elements of periodic system

  • Isotopes of technetium — Technetium (Tc) is one of the two elements in the first 82 that have no stable isotopes (in fact, it is the lowest numbered element that is exclusively radioactive); the other such element is promethium. [ LANL Periodic Table , Technetium… …   Wikipedia

  • molybdenum — /meuh lib deuh neuhm/, n. Chem. a silver white metallic element, used as an alloy with iron in making hard, high speed cutting tools. Symbol: Mo; at. wt.: 95.94; at. no.: 42; sp. gr.: 10.2. [1810 20; < NL, alter. of earlier molybdena < L… …   Universalium

  • Abundances of the isotopes — ▪ Table Abundances of the isotopes element Z symbol A abundance   mass excess hydrogen 1 H 1 99.9885 7.289 2 0.0151 13.136 helium 2 He 3 0.000138 14.931 4 99.999863 2.425 lithium 3 Li 6 7.59 14.086 7 92.41 14.908 beryllium 4 Be 9 100  11.348… …   Universalium

  • Multipurpose Applied Physics Lattice Experiment — For other senses of maple , see Maple (disambiguation). The Multipurpose Applied Physics Lattice Experiment (MAPLE) dedicated isotope production facility was a project jointly undertaken by AECL and MDS Nordion. It was intended to include two… …   Wikipedia

  • Nordion — Inc. Type Public Traded as TSX: NDN NYSE:  …   Wikipedia

  • Technetium — molybdenum ← technetium → ruthenium Mn ↑ Tc ↓ Re …   Wikipedia

  • Stable isotope — Graph of isotopes/nuclides by type of decay. Orange and blue nuclides are unstable, with the black squares between these regions representing stable nuclides. The unbroken line passing below many of the nuclides represents the theoretical… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”