Infinitesimal strain theory

Infinitesimal strain theory

The infinitesimal strain theory, sometimes called small deformation theory, small displacement theory, or small displacement-gradient theory, deals with "infinitesimal deformations" of a continuum body. For an infinitesimal deformation the displacements and the displacement gradients are small compared to unity, i.e., |mathbf u| ll 1 and | abla mathbf u| ll 1 , allowing for the "geometric linearization" of the Lagrangian finite strain tensor mathbf E, and the Eulerian finite strain tensor mathbf e, i.e. the non-linear or second-order terms of the finite strain tensor can be neglected. The linearized Lagrangian and Eulerian strain tensors are approximately the same and can be approximated by the infinitesimal strain tensor or Cauchy's strain tensor, varepsilon. Thus,

: mathbf E approx mathbf e approx varepsilon = frac{1}{2}left(mathbf u abla^T + mathbf u abla ight)or: E_{KL}approx e_{rs}approxvarepsilon_{ij}=frac{1}{2}left(u_{i,j}+u_{j,i} ight)

The infinitesimal strain theory is used in the analysis of deformations of materials exhibiting elastic behaviour, such as materials found in mechanical and civil engineering applications, e.g. concrete and steel.

Infinitesimal strain tensor

For "infinitesimal deformations" of a continuum body, in which the displacements and the displacement gradients are small compared to unity, i.e., |mathbf u| ll 1 and | abla mathbf u| ll 1 , it is possible for the "geometric linearization" of the Lagrangian finite strain tensor mathbf E, and the Eulerian finite strain tensor mathbf e, i.e. the non-linear or second-order terms of the finite strain tensor can be neglected. Thus we have

: mathbf E =frac{1}{2}left(mathbf u abla_{mathbf X}^T + mathbf u abla_{mathbf X} + mathbf u abla_{mathbf X}^T mathbf u abla_{mathbf X} ight)approx frac{1}{2}left(mathbf u abla_{mathbf X}^T + mathbf u abla_{mathbf X} ight)or: E_{KL}=frac{1}{2}left(frac{partial U_K}{partial X_L}+frac{partial U_L}{partial X_K}+frac{partial U_M}{partial X_K}frac{partial U_M}{partial X_L} ight)approx frac{1}{2}left(frac{partial U_K}{partial X_L}+frac{partial U_L}{partial X_K} ight)and: mathbf e =frac{1}{2}left(mathbf u abla_{mathbf x}^T + mathbf u abla_{mathbf x} - mathbf u abla_{mathbf x}^T mathbf u abla_{mathbf x} ight)approx frac{1}{2}left(mathbf u abla_{mathbf x}^T + mathbf u abla_{mathbf x} ight)or: e_{rs}=frac{1}{2}left(frac{partial u_r}{partial x_s} +frac{partial u_s}{partial x_r}-frac{partial u_k}{partial x_r}frac{partial u_k}{partial x_s} ight)approx frac{1}{2}left(frac{partial u_r}{partial x_s} +frac{partial u_s}{partial x_r} ight)

This linearization implies that the Lagrangian description and the Eulerian description are approximately the same as there is little difference in the material and spatial coordinates of a given material point in the continuum. Therefore, the material displacement gradient components and the spatial displacement gradient components are approximately equal. Thus we have

: mathbf E approx mathbf e approx varepsilon = frac{1}{2}left(mathbf u abla^T + mathbf u abla ight) qquad ext{or} qquad E_{KL}approx e_{rs}approxvarepsilon_{ij}=frac{1}{2}left(u_{i,j}+u_{j,i} ight)

where varepsilon_{ij} are the components of the "infinitesimal strain tensor", varepsilon, also called "Cauchy's strain tensor", "linear strain tensor", or "small strain tensor".

: egin{align}varepsilon_{ij}&=frac{1}{2}left(u_{i,j}+u_{j,i} ight)\

left [egin{matrix}varepsilon_{11} & varepsilon_{12} & varepsilon_{13} \ varepsilon_{21} & varepsilon_{22} & varepsilon_{23} \ varepsilon_{31} & varepsilon_{32} & varepsilon_{33} \ end{matrix} ight] &=left [egin{matrix} frac{partial u_1}{partial x_1} & frac{1}{2} left(frac{partial u_1}{partial x_2}+frac{partial u_2}{partial x_1} ight) & frac{1}{2} left(frac{partial u_1}{partial x_3}+frac{partial u_3}{partial x_1} ight) \ frac{1}{2} left(frac{partial u_2}{partial x_1}+frac{partial u_1}{partial x_2} ight) & frac{partial u_2}{partial x_2} & frac{1}{2} left(frac{partial u_2}{partial x_3}+frac{partial u_3}{partial x_2} ight) \ frac{1}{2} left(frac{partial u_3}{partial x_1}+frac{partial u_1}{partial x_3} ight) & frac{1}{2} left(frac{partial u_3}{partial x_2}+frac{partial u_2}{partial x_3} ight) & frac{partial x_3}{partial x_3} \ end{matrix} ight] \

left [egin{matrix}varepsilon_{xx} & varepsilon_{xy} & varepsilon_{xz} \ varepsilon_{yx} & varepsilon_{yy} & varepsilon_{yz} \ varepsilon_{zx} & varepsilon_{zy} & varepsilon_{zz} \ end{matrix} ight] &=left [egin{matrix} frac{partial u_x}{partial x} & frac{1}{2} left(frac{partial u_x}{partial y}+frac{partial u_y}{partial x} ight) & frac{1}{2} left(frac{partial u_x}{partial z}+frac{partial u_z}{partial x} ight) \ frac{1}{2} left(frac{partial u_y}{partial x}+frac{partial u_x}{partial y} ight) & frac{partial u_y}{partial y} & frac{1}{2} left(frac{partial u_y}{partial z}+frac{partial u_z}{partial y} ight) \ frac{1}{2} left(frac{partial u_z}{partial x}+frac{partial u_x}{partial z} ight) & frac{1}{2} left(frac{partial u_z}{partial y}+frac{partial u_y}{partial z} ight) & frac{partial u_z}{partial z} \ end{matrix} ight] end{align} ,

Furthermore,

: varepsilon=frac{1}{2}left(mathbf F+mathbf F^T ight)-mathbf I

Considering the general expression for the Lagrangian finite strain tensor and the Eulerian finite strain tensor we have

: mathbf E_{(m)}=frac{1}{2m}(mathbf U^{2m}-I)approx varepsilon

: mathbf e_{(m)}=frac{1}{2m}(mathbf V^{2m}-I)approx varepsilon

Geometric derivation of the infinitesimal strain tensor

Considering a two-dimensional deformation of an infinitesimal rectangular material element with dimensions dx by dy (Figure 1), which after deformation, takes the form of a rhombus form. From the geometry of Figure 1 we have

: egin{align}overline {ab} &= sqrt{left(dx+frac{partial u_x}{partial x}dx ight)^2 + left( frac{partial u_y}{partial x}dx ight)^2} \&= sqrt{1+2frac{partial u_x}{partial x}+left(frac{partial u_x}{partial x} ight)^2 + left(frac{partial u_y}{partial x} ight)^2}dx \end{align}

For very small displacement gradients, i.e., | abla mathbf u| ll 1 , we have

: overline {ab} approx dx +frac{partial u_x}{partial x}dx

The normal strain in the x-direction of the rectangular element is defined by

: varepsilon_x = frac{overline {ab}-overline {AB{overline {ABand knowing that overline {AB}= dx, we have

: varepsilon_x = frac{partial u_x}{partial x}

Similarly, the normal strain in the y-direction, and z-direction, becomes: varepsilon_y = frac{partial u_y}{partial y} quad , qquad varepsilon_z = frac{partial u_z}{partial z}

The engineering shear strain, or the change in angle between two originally orthogonal material lines, in this case line overline {AC} and overline {AB}, is defined as

: gamma_{xy}= alpha + eta

From the geometry of Figure 1 we have

: an alpha=frac{dfrac{partial u_y}{partial x}dx}{dx+dfrac{partial u_x}{partial x}dx}=frac{dfrac{partial u_y}{partial x{1+dfrac{partial u_x}{partial x quad , qquad an eta=frac{dfrac{partial u_x}{partial y}dy}{dy+dfrac{partial u_y}{partial y}dy}=frac{dfrac{partial u_x}{partial y{1+dfrac{partial u_y}{partial y

For small rotations, i.e. alpha and eta are ll 1 we have

: an alpha approx alpha quad , qquad an eta approx eta

and, again, for small displacement gradients, we have

: alpha=frac{partial u_y}{partial x} quad , qquad eta=frac{partial u_x}{partial y}

thus

: gamma_{xy}= alpha + eta = frac{partial u_y}{partial x} + frac{partial u_x}{partial y}By interchanging x and y and u_x and u_y, it can be shown that gamma_{xy} = gamma_{yx}

Similarly, for the y- z and x- z planes, we have

: gamma_{yz}=gamma_{zy} = frac{partial u_y}{partial z} + frac{partial u_z}{partial y} quad , qquad gamma_{zx}=gamma_{xz}= frac{partial u_z}{partial x} + frac{partial u_x}{partial z}

It can be seen that the tensorial shear strain components of the infinitesimal strain tensor can then be expressed using the engineering strain definition, gamma, as

left [egin{matrix}varepsilon_{xx} & varepsilon_{xy} & varepsilon_{xz} \ varepsilon_{yx} & varepsilon_{yy} & varepsilon_{yz} \ varepsilon_{zx} & varepsilon_{zy} & varepsilon_{zz} \ end{matrix} ight] = left [egin{matrix}varepsilon_{xx} & gamma_{xy}/2 & gamma_{xz}/2 \ gamma_{yx}/2 & varepsilon_{yy} & gamma_{yz}/2 \ gamma_{zx}/2 & gamma_{zy}/2 & varepsilon_{zz} \ end{matrix} ight]

Physical interpretation of the infinitesimal strain tensor

Principal strains

Volumetric strain

The "dilatation" (the relative variation of the volume) ? = ?"V"/"V"0, is the trace of the tensor::delta=frac{Delta V}{V_0} = varepsilon_{11} + varepsilon_{22} + varepsilon_{33}Actually, if we consider a cube with an edge length "a", it is a quasi-cube after the deformation (the variations of the angles do not change the volume) with the dimensions a cdot (1 + varepsilon_{11}) imes a cdot (1 + varepsilon_{22}) imes a cdot (1 + varepsilon_{33}) and "V"0 = "a"3, thus:frac{Delta V}{V_0} = frac{left ( 1 + varepsilon_{11} + varepsilon_{22} + varepsilon_{33} + varepsilon_{11} cdot varepsilon_{22} + varepsilon_{11} cdot varepsilon_{33}+ varepsilon_{22} cdot varepsilon_{33} + varepsilon_{11} cdot varepsilon_{22} cdot varepsilon_{33} ight ) cdot a^3 - a^3}{a^3}as we consider small deformations,:1 gg varepsilon_{ii} gg varepsilon_{ii} cdot varepsilon_{jj} gg varepsilon_{11} cdot varepsilon_{22} cdot varepsilon_{33} therefore the formula.


Real variation of volume (top) and the approximated one (bottom): the green drawing shows the estimated volume and the orange drawing the neglected volume

In case of pure shear, we can see that there is no change of the volume.

train deviator tensor

Octahedral strains

Compatibility equations

For prescribed strain components varepsilon_{ij} the strain tensor equation u_{i,j}+u_{j,i}= 2 varepsilon_{ij} represents a system of six differential equations for the determination of three displacements components u_i, giving an over-determined system. Thus, a solution does not generally exist for an arbitrary choice of strain components. Therefore, some restrictions, named "compatibility equations", are imposed upon the strain components. With the addition of the three compatibility equations the number of independent equations is reduced to three, matching the number of unknown displacement components. These constraints on the strain tensor were discovered by Saint-Venant, and are called the "Saint Venant compatibility equations".

The compatibility functions serve to assure a single-valued continuous displacement function u_i. If the elastic medium is visualized as a set of infinitesimal cubes in the unstrained state, after the medium is strained, an arbitrary strain tensor may not yield a situation in which the distorted cubes still fit together without overlapping.

In index notation, the compatibility equations are expressed as: varepsilon_{ij,km}+varepsilon_{km,ij}-varepsilon_{ik,jm}-varepsilon_{jm,ik}=0

:

Plane strain

In real engineering components, stress (and strain) are 3-D tensors but in prismatic structures such as a long metal billet, the length of the structure is much greater than the other two dimensions. The strains associated with length, i.e the normal strain epsilon_{33} and the shear strains epsilon_{13} and epsilon_{23} (if the length is the 3-direction) are constrained by nearby material and are small compared to the "cross-sectional strains". The strain tensor can then be approximated by:

: underline{underline{epsilon = egin{bmatrix}epsilon_{11} & epsilon_{12} & 0 \epsilon_{21} & epsilon_{22} & 0 \ 0 & 0 & 0end{bmatrix}

in which the double underline indicates a second order tensor. This strain state is called "plane strain". The corresponding stress tensor is:

: underline{underline{sigma = egin{bmatrix}sigma_{11} & sigma_{12} & 0 \sigma_{21} & sigma_{22} & 0 \ 0 & 0 & sigma_{33}end{bmatrix}

in which the non-zero sigma_{33} is needed to maintain the constraint epsilon_{33} = 0. This stress term can be temporarily removed from the analysis to leave only the in-plane terms, effectively reducing the 3-D problem to a much simpler 2-D problem.

ee also

*Deformation (mechanics)
*Stress
*Strain gauge
*Stress-strain curve
*Hooke's law
*Poisson's ratio
*Finite strain theory
*Strain Rate
*plane stress
*Digital image correlation

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Finite strain theory — Continuum mechanics …   Wikipedia

  • Infinitesimal calculus — Gottfried Wilhelm Leibniz (left) and Isaac Newton (right) …   Wikipedia

  • Differential (infinitesimal) — For other uses of differential in calculus, see differential (calculus), and for more general meanings, see differential. In calculus, a differential is traditionally an infinitesimally small change in a variable. For example, if x is a variable …   Wikipedia

  • Mindlin–Reissner plate theory — Deformation of a plate highlighting the displacement, the mid surface (red) and the normal to the mid surface (blue) The Mindlin Reissner theory of plates is an extension of Kirchhoff–Love plate theory that takes into account shear deformations… …   Wikipedia

  • Failure theory (material) — v · d · e Materials failure modes Buckling · Corro …   Wikipedia

  • Mohr–Coulomb theory — Continuum mechanics …   Wikipedia

  • solids, mechanics of — ▪ physics Introduction       science concerned with the stressing (stress), deformation (deformation and flow), and failure of solid materials and structures.       What, then, is a solid? Any material, fluid or solid, can support normal forces.… …   Universalium

  • Deformation (mechanics) — This article is about deformation in mechanics. For the term s use in engineering, see Deformation (engineering). Deformation in continuum mechanics is the transformation of a body from a reference configuration to a current configuration.[1] A… …   Wikipedia

  • Compatibility (mechanics) — Continuum mechanics …   Wikipedia

  • Linear elasticity — Continuum mechanics …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”