Schwinger parametrization


Schwinger parametrization

Schwinger parametrization is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops.

Using the well-known observation that

:frac{1}{A^n}=frac{1}{(n-1)!}int^infty_0 du , u^{n-1}e^{-uA},

Julian Schwinger noticed that one may simplify the integral:

:int frac{dp}{A(p)^n}=frac{1}{Gamma(n)}int dp int^infty_0 du , u^{n-1}e^{-uA(p)}=frac{1}{Gamma(n)}int^infty_0 du , u^{n-1} int dp , e^{-uA(p)},

for Re(n)>0.

See also Feynman parametrization.


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Julian Schwinger — Infobox Scientist name =Julian Schwinger imagesize = 180px caption = birth date = birth date|1918|2|12|mf=y birth place = New York City, New York, USA death date = death date and age|1994|7|16|1918|2|12 death place = Los Angeles, California, USA… …   Wikipedia

  • Feynman parametrization — is a technique for evaluating loop integrals which arise from Feynman diagrams with one or more loops. However, it is sometimes useful in integration in areas of pure mathematics too.Richard Feynman observed that::frac{1}{AB}=int^1 0… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • Loop integral — In quantum field theory and statistical mechanics, loop integrals are the integrals which appear when evaluating the Feynman diagrams with one or more loops by integrating over the internal momenta.There are two standard techniques for evaluating …   Wikipedia

  • Richard Feynman — Feynman redirects here. For other uses, see Feynman (disambiguation). Richard P. Feynman Richard Feynman at Fermilab Bor …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.