Poisson's equation

Poisson's equation

In mathematics, Poisson's equation is a partial differential equation with broad utility in electrostatics, mechanical engineering and theoretical physics. It is named after the French mathematician, geometer and physicist Siméon-Denis Poisson. The Poisson equation is

:Deltavarphi=f

where Delta is the Laplace operator, and "f" and φ are real or complex-valued functions on a manifold. When the manifold is Euclidean space, the Laplace operator is often denoted as { abla}^2 and so Poisson's equation is frequently written as

:{ abla}^2 varphi = f.

In three-dimensional Cartesian coordinates, it takes the form

:left( frac{partial^2}{partial x^2} + frac{partial^2}{partial y^2} + frac{partial^2}{partial z^2} ight)varphi(x,y,z) = f(x,y,z).

For vanishing "f", this equation becomes Laplace's equation

:Delta varphi = 0. !

The Poisson equation may be solved using a Green's function; a general exposition of the Green's function for the Poisson equation is given in the article on the screened Poisson equation. There are various methods for numerical solution. The relaxation method, an iterative algorithm, is one example.

Electrostatics

One of the cornerstones of electrostatics is the posing and solving of problems that are described by the Poisson equation. Finding φ for some given "f" is an important practical problem, since this is the usual way to find the electric potential for a given charge distribution.

The derivation of Poisson's equation in electrostatics follows. SI units are used and Euclidean space is assumed.

Starting with Gauss' law for electricity (also part of Maxwell's equations) in a differential control volume, we have:

:mathbf{ abla} cdot mathbf{D} = ho::mathbf{ abla} cdot means to take the divergence.::mathbf{D} is the electric displacement field.:: ho is the charge density.

Assuming the medium is linear, isotropic, and homogeneous (see polarization density), then:

:mathbf{D} = varepsilon mathbf{E}::varepsilon is the permittivity of the medium.::mathbf{E} is the electric field.

By substitution and division, we have:

:mathbf{ abla} cdot mathbf{E} = frac{ ho}{varepsilon}

In the absence of a changing magnetic field, mathbf{B}, Faraday's law of induction gives:

: abla imes mathbf{E} = -dfrac{partial mathbf{B {partial t} = 0:: imes is the cross product.::t is time.

Since the curl of the electric field is zero, it is defined by a scalar electric potential field, varphi (see Helmholtz decomposition).

:mathbf{E} = - abla varphi

Eliminating mathbf{E} by substitution, we have a form of the Poisson equation:

: abla cdot abla varphi = { abla}^2 varphi = -frac{ ho}{varepsilon}.

Solving Poisson's equation for the potential requires knowing the charge density distribution. If the charge density is zero, then Laplace's equation results. If the charge density follows a Boltzmann distribution, then the Poisson-Boltzmann equation results. The Poisson-Boltzmann equation plays a role in the development of the Debye-Hückel theory of dilute electrolyte solutions.

(Note: Although the above discussion assumes that the magnetic field not varying in time, the same Poisson equation arises even if it does vary in time, as long as the Coulomb gauge is used. However, in this more general context, computing varphi is no longer sufficient to calculate mathbf{E}, since the latter also depends on the magnetic vector potential, which must be independently computed.)

Potential of a Gaussian charge density

If there is a spherically symmetric Gaussian charge density ho(r) :

: ho(r) = frac{Q}{sigma^3sqrt{2pi}^3},e^{-r^2/(2sigma^2)},

where "Q" is the total charge, then the solution φ ("r") of Poisson's equation,

:{ abla}^2 varphi = - { ho over varepsilon } ,

is given byFact|date=September 2007

: varphi(r) = { 1 over 4 pi varepsilon } frac{Q}{r},mbox{erf}left(frac{r}{sqrt{2}sigma} ight)

where erf("x") is the error function.This solution can be checked explicitly by a careful manual evaluation of { abla}^2 varphi.Note that, for "r" much greater than σ, erf("x") approaches unity and the potential φ ("r") approaches the point charge potential { 1 over 4 pi varepsilon_0 } {Q over r} , as one would expect. Furthermore the erf function approaches 1 extremely fast as its argument increase; in practice for r > 3σ the relative error is smaller than 1/1000.

ee also

* Discrete Poisson equation

References


* [http://eqworld.ipmnet.ru/en/solutions/lpde/lpde302.pdf Poisson Equation] at EqWorld: The World of Mathematical Equations.
* L.C. Evans, "Partial Differential Equations", American Mathematical Society, Providence, 1998. ISBN 0-8218-0772-2
* A. D. Polyanin, "Handbook of Linear Partial Differential Equations for Engineers and Scientists", Chapman & Hall/CRC Press, Boca Raton, 2002. ISBN 1-58488-299-9

External links

* [http://planetmath.org/encyclopedia/PoissonsEquation.html Poisson's equation] on PlanetMath.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Poisson-Boltzmann equation — The Poisson Boltzmann equation is a differential equation that describes electrostatic interactions between molecules in ionic solutions. It is the mathematical base for the Gouy Chapman double layer (interfacial) theory; first proposed by Gouy… …   Wikipedia

  • Euler–Poisson–Darboux equation — The Euler–Poisson–Darbouxcite book author = Zwillinger, D. year = 1997 title = Handbook of Differential Equations 3rd edition publisher = Academic Press, Boston, MA isbn = ] equation is the partial differential equation: u {x,y}+frac{N(u x+u… …   Wikipedia

  • Poisson (disambiguation) — Poisson (meaning fish in French) may refer to:* Siméon Denis Poisson (1781 1840), French mathematician, geometer and physicist, after whom a number of mathematical concepts and physical phenomena are named, including: ** Poisson distribution, a… …   Wikipedia

  • Poisson-Boltzmann-Gleichung — Die Poisson Boltzmann Gleichung beschreibt die elektrostatischen Wechselwirkungen zwischen Molekülen in Flüssigkeiten mit darin gelösten Ionen. Sie ist vor allem in den Gebieten der Moleküldynamik und Biophysik von großer Bedeutung. Hier dient… …   Deutsch Wikipedia

  • Equation de Poisson — Équation de Poisson Pour les articles homonymes, voir Poisson (homonymie). Articles d analyse vectorielle …   Wikipédia en Français

  • Equation de Poisson-Boltzmann — Équation de Poisson Boltzmann Pour les articles homonymes, voir Poisson (homonymie). L équation de Poisson Boltzmann est une équation qui apparaît dans la théorie de Debye Huckel des solutions ioniques. Cette équation permet de calculer le… …   Wikipédia en Français

  • Équation de poisson — Pour les articles homonymes, voir Poisson (homonymie). Articles d analyse vectorielle …   Wikipédia en Français

  • Équation de poisson-boltzmann — Pour les articles homonymes, voir Poisson (homonymie). L équation de Poisson Boltzmann est une équation qui apparaît dans la théorie de Debye Huckel des solutions ioniques. Cette équation permet de calculer le potentiel électrostatique créé par… …   Wikipédia en Français

  • Equation de Laplace — Équation de Laplace Articles d analyse vectorielle Objet …   Wikipédia en Français

  • Équation de laplace — Articles d analyse vectorielle Objet …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”