Bézier triangle


Bézier triangle

A cubic Bézier triangle is a surface with the equation

:(alpha s+eta t+gamma u)^3 | 0 le s le 1, 0 le t le 1, 0 le u le 1, s+t+u=1:=egin{matrix} & & & eta^3 t^3 & & & \ & & & & & & \ & & + 3alphaeta^2 st^2 & & + 3eta^2gamma t^2 u & & \ & & & & & & \ & + 3alpha^2eta s^2 t & & + 6alphaetagamma stu & & + 3etagamma^2 tu^2 & \ & & & & & & \ + alpha^3 s^3 & & + 3alpha^2gamma s^2 u & & + 3alphagamma^2 su^2 & & + gamma^3 u^3end{matrix}

where α3, β3, γ3, α2β, αβ2, β2γ, βγ2, αγ2, α2γ and αβγ are the control points of the triangle.

The corners of the triangle are the points α3, β3 and γ3. The edges of the triangle are themselves Bézier curves, with the same control points as the Bézier triangle.

It is also possible to create quadratic or other degrees of Bézier triangles, by changing the exponent in the original equation, in which case there will be more or fewer control points. With the exponent 1, the resulting Bézier triangle is actually a regular flat triangle. In all cases, the edges of the triangle will be Bézier curves of the same degree.

By removing the γu term, a regular Bézier curve results. Also, while not very useful for display on a physical computer screen, by adding extra terms, a Bézier tetrahedron or Bézier polytope results.

Due to the nature of the equation, the entire triangle will be contained within the volume surrounded by the control points, and affine transformations of the control points will correctly transform the whole triangle in the same way.

An advantage of Bézier triangles in computer graphics is, they are smooth, and can easily be approximated by regular triangles, by recursively dividing the Bézier triangle into two separate Bézier triangles, until they are considered sufficiently small, using only addition and division by two, not requiring any floating point arithmetic whatsoever.
* The following computes the new control points for the half of the full Bézier triangle with the corner α3, a corner halfway along the Bézier curve between α3 and β3, and the third corner γ3.:egin{vmatrix}oldsymbol{alpha^3}'\oldsymbol{alpha^2eta}'\oldsymbol{alphaeta^2}'\oldsymbol{eta^3}'\oldsymbol{alpha^2gamma}'\oldsymbol{alphaetagamma}'\oldsymbol{eta^2gamma}'\oldsymbol{alphagamma^2}'\oldsymbol{etagamma^2}'\oldsymbol{gamma^3}'end{vmatrix}=egin{vmatrix}1&0&0&0&0&0&0&0&0&0\{1over 2}&{1over 2}&0&0&0&0&0&0&0&0\{1over 4}&{2over 4}&{1over 4}&0&0&0&0&0&0&0\{1over 8}&{3over 8}&{3over 8}&{1over 8}&0&0&0&0&0&0\0&0&0&0&1&0&0&0&0&0\0&0&0&0&{1over 2}&{1over 2}&0&0&0&0\0&0&0&0&{1over 4}&{2over 4}&{1over 4}&0&0&0\0&0&0&0&0&0&0&1&0&0\0&0&0&0&0&0&0&{1over 2}&{1over 2}&0\0&0&0&0&0&0&0&0&0&1end{vmatrix}cdotegin{vmatrix}oldsymbol{alpha^3}\oldsymbol{alpha^2eta}\oldsymbol{alphaeta^2}\oldsymbol{eta^3}\oldsymbol{alpha^2gamma}\oldsymbol{alphaetagamma}\oldsymbol{eta^2gamma}\oldsymbol{alphagamma^2}\oldsymbol{etagamma^2}\oldsymbol{gamma^3}end{vmatrix}:equivalently, using addition and division by two only,:
-----
align="center"
:where := means to replace the vector on the left with the vector on the right.:Note that halving a bézier triangle is similar to halving Bézier curves of all orders up to the order of the Bézier triangle.

A general nth-order Bezier triangle has frac{(n+1)(n+2)}{2} control points alpha^i eta^j gamma^k where i,j,k are nonnegative integers such that i+j+k=n. The surface is then defined as

: (alpha s + eta t + gamma u)^n = sum_{i+j+k=n, i,j,k ge 0} {n choose i j k } s^i t^j u^k alpha^i eta^j gamma^k = sum_{i+j+k=n, i,j,k ge 0} frac{n!}{i!j!k!} s^i t^j u^k alpha^i eta^j gamma^k

for all nonnegative real numbers s+t+u=1.

ee also

* Bézier curve
* Bézier surface (square)
* Surface


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Triangle - получить на Академике рабочий купон на скидку Geekbuying или выгодно triangle купить с бесплатной доставкой на распродаже в Geekbuying

  • Bézier surface — Bézier surfaces are a species of mathematical spline used in computer graphics, computer aided design, and finite element modelling. As with the Bézier curve, a Bézier surface is defined by a set of control points. Similar to interpolation in… …   Wikipedia

  • Bézier — can refer to:*Pierre Bézier, French engineer and creator of Bézier curves *Bézier curve *Bézier triangle *Bézier spline *Bézier surface * The town of Béziers in France * AS Béziers Hérault, a French rugby union team *Bézier Games, an American… …   Wikipedia

  • Bezier — Bézier Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Pierre Bézier est un ingénieur en mécanique et en électricité français, il est principalement connu pour les courbes de Bézier qui ont trouvé… …   Wikipédia en Français

  • Bézier curve — Cubic Bézier curve A Bézier curve is a parametric curve frequently used in computer graphics and related fields. Generalizations of Bézier curves to higher dimensions are called Bézier surfaces, of which the Bézier triangle is a special case. In… …   Wikipedia

  • Bézier — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom.  Pour l’article homophone, voir Besier. Jean Bezier, chouan ; Pierre Bézier est un ingénieur en mécanique et en électricité français, il est… …   Wikipédia en Français

  • Triángulo Bézier — Saltar a navegación, búsqueda Un triángulo cúbico Bézier es una superficie con ecuación …   Wikipedia Español

  • Triángulo de Bézier — Un triángulo cúbico Bézier es una superficie con ecuación …   Wikipedia Español

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • List of numerical analysis topics — This is a list of numerical analysis topics, by Wikipedia page. Contents 1 General 2 Error 3 Elementary and special functions 4 Numerical linear algebra …   Wikipedia

  • List of mathematical shapes — Following is a list of some mathematically well defined shapes. See also list of polygons, polyhedra and polytopes and list of geometric shapes.0D with no surface*point1D with 0D surface*interval *line2D with 1D surface*Bézier curve: ( As + Bt )… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.