Holomorph (mathematics)

Holomorph (mathematics)

In mathematics, especially in the area of algebra known as group theory, the holomorph of a group is a group which simultaneously contains (copies of) the group and its automorphism group. The holomorph provides interesting examples of groups, and allows one to treat group elements and group automorphism in a uniform context.

Hol("G") as a semi-direct product

In group theory, for a group G, the holomorph of G denoted Hol(G) can be described in two ways. First, if Aut(G) is the automorphism group of G then:Hol(G)=G times Aut(G)where the multiplication is given by:(g,alpha)(h,eta)=(galpha(h),alphaeta) [Eq. 1]

Typically, a semi-direct product is given in the form G times_{phi}A where G and A are groups and phi:A ightarrow Aut(G) is a homomorphism and where the multiplication of elements in the semi-direct product is given as:(g,a)(h,b)=(gphi(a)(h),ab)which is well defined, since phi(a)in Aut(G) and therefore phi(a)(h)in G.

For the holomorph, A=Aut(G) and phi is the identity map, as such we suppress writing phi explicitly in the multiplication given in [Eq. 1] above.

For example,
* G=C_3=langle x angle={1,x,x^2} the cyclic group of order 3
* Aut(G)=langle sigma angle={1,sigma} where sigma(x)=x^2
* Hol(G)={(x^i,sigma^j)} with the multiplication given by
* (x^{i_1},sigma^{j_1})(x^{i_2},sigma^{j_2})=(x^{i_1+i_22^{^{j_1},sigma^{j_1+j_2})where the exponents of x are taken mod 3 and those of sigma mod 2.

Observe, for example:(x,sigma)(x^2,sigma)=(x^{1+2cdot2},sigma^2)=(x^2,1)and note also that this group is not abelian, as ig(x^2,sigma)(x,sigma)=(x,1), so that Hol(C_3) is a non-abelian group of order 6 which, by basic group theory, must be isomorphic to the symmetric group S_3.

Hol("G") as a permutation group

A group "G" acts naturally on itself by left and right multiplication, each giving rise to a homomorphism from "G" into the symmetric group on the underlying set of "G". One homomorphism are defined as "λ": "G" → Sym("G"), "λ"("g")("h") = "g"·"h". That is, "g" is mapped to the permutation obtained by left multiplying each element of "G" by "g". Similarly, a second homomorphism "ρ": "G" → Sym("G") is defined by "ρ"("g")("h") = "h"·"g"−1, where the inverse ensures that "ρ"("g"·"h")("k") = "ρ"("g")("ρ"("h")("k")). These homomorphisms are called the left and right regular representations of "G". Each homomorphism is injective, a fact referred to as Cayley's theorem.

For example, if "G" = "C"3 = {1, "x", "x"2 } is a cyclic group of order three, then
* "λ"("x")(1) = "x"·1 = "x",
* "λ"("x")("x") = "x"·"x" = "x"2, and
* "λ"("x")("x"2) = "x"·"x"2 = 1,so "λ"("x") takes (1, "x", "x"2) to ("x", "x"2, 1).

The image of "λ" is a subgroup of Sym("G") isomorphic to "G", and its normalizer in Sym("G") is defined to be the holomorph "H" of "G". For each "f" in "H" and "g" in "G", there is an "h" in "G" such that "f"·"λ"("g") = "λ"("h")·"f". If an element "f" of the holomorph fixes the identity of "G", then for "1" in "G", ("f"·"λ"("g"))("1") = ("λ"("h")·"f")("1"), but the left hand side is "f"("g"), and the right side is "h". In other words, if "f" in "H" fixes the identity of "G", then for every "g" in "G", "f"·"λ"("g") = "λ"("f"("g"))·"f". If "g", "k" are elements of "G", and "f" is an element of "H" fixing the identity of "G", then applying this equality twice to "f"·"λ"("g")·"λ"("h") and once to the (equivalent) expression "f"·"λ"("g"·"h") gives that "f"("g")·"f"("h") = "f"("g"·"h"). In other words, every element of "H" that fixes the identity of "G" is in fact an automorphism of "G". Such an "f" normalizes any "λ"("g"), and the only "λ"("g") that fixes the identity is "λ"(1). Setting "A" to be the stabilizer (group theory) of the identity, the subgroup generated by "A" and "λ"("G") is semidirect product with normal subgroup "λ"("G") and complement "A". Since "λ"("G") is transitive, the subgroup generated by "λ"("G") and the point stabilizer "A" is all of "H", which shows the holomorph as a permutation group is isomorphic to the holomorph as semidirect product.

It is useful, but not directly relevant that the centralizer of "λ"("G") in Sym("G") is "ρ"("G"), their intersection is "ρ"(Z("G")) = "λ"(Z("G")), where Z("G") is the center of "G", and that "A" is a common complement to both of these normal subgroups of "H".

Notes

* "ρ"("G") ∩ Aut("G") = 1
* Aut("G") normalizes "ρ"("G") so that canonically "ρ"("G")Aut("G") ≅ "G" ⋊ Aut("G")
*Inn(G)cong Im(gmapsto lambda(g) ho(g)) since "λ"("g")"ρ"("g")("h") = "ghg"-1
* "K" ≤ "G" is a characteristic subgroup if and only if λ(K) ⊴ Hol("G")

References

* | year=1959


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Holomorph — may refer to:;Mathematics: * holomorph (mathematics), a group which simultaneously contains (copies of) a group and its automorphism group * holomorphic functions, the central object of study of complex analysis;Biology: * teleomorph, anamorph… …   Wikipedia

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • Holomorphe d'un groupe — En mathématiques, et plus particulièrement en théorie des groupes, l holomorphe d un groupe G, noté , est un certain groupe qui contient à la fois G et le groupe des automorphismes de G, ou du moins des copies de ces deux groupes. Il permet… …   Wikipédia en Français

  • Auflösbar — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Euklidisch — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Fehlstand — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Integrabel — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Kollinear — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Kopunktal — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

  • Mathematisches Attribut — In diesem Glossar werden kurze Erklärungen mathematischer Attribute gesammelt. Unter einem Attribut wird eine Eigenschaft verstanden, die einem mathematischen Objekt zugesprochen wird. Ein Attribut hat oft die Form eines Adjektivs (endlich, offen …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”