Direct reduced iron


Direct reduced iron

Direct-reduced iron (DRI), also called sponge iron,[1] is produced from direct reduction of iron ore (in the form of lumps, pellets or fines) by a reducing gas produced from natural gas or coal. The reducing gas is a mixture majority of hydrogen (H2) and carbon monoxide (CO) which acts as reducing agent. This process of directly reducing the iron ore in solid form by reducing gases is called direct reduction.

The conventional route for making steel consists of sintering or pelletization plants, coke ovens, blast furnaces, and basic oxygen furnaces. Such plants require high capital expenses and raw materials of stringent specifications. Coking coal is needed to make a coke strong enough to support the burden in the blast furnace. Integrated steel plants of less than one million tons annual capacity are generally not economically viable. The coke ovens and sintering plants in an integrated steel plant are polluting and expensive units. India is the largest sponge iron producer in the world since 2002.[2]

Contents

Process

Direct reduction, an alternative route of iron making, has been developed to overcome some of these difficulties of conventional blast furnaces. DRI is successfully manufactured in various parts of the world through either natural gas or coal-based technology. Iron ore is reduced in solid state at 800 to 1,050 °C (1,472 to 1,922 °F) either by reducing gas (H2+CO) or coal. The specific investment and operating costs of direct reduction plants are low compared to integrated steel plants and are more suitable for many developing countries where supplies of coking coal are limited.

The direct reduction process is intrinsically more energy efficient than the blast furnace[citation needed] because it operates at a lower temperature, and there are several other factors which make it economical:

  • Direct-reduced iron is richer in iron than pig iron, typically 90–94% total iron (depending on the quality of the raw ore) [3] as opposed to about 93% for molten pig iron, and an excellent feedstock for the electric furnaces used by mini mills, allowing them to use lower grades of scrap for the rest of the charge or to produce higher grades of steel.
  • Hot-briquetted iron (HBI) is a compacted form of DRI designed for ease of shipping, handling, and storage.
  • Hot Direct Reduced Iron (HDRI) is iron not cooled before discharge from the reduction furnace, immediately transported to a waiting electric arc furnace and charged thereby saving energy.
  • The direct reduction process uses pelletized iron ore or natural "lump" ore. One exception is the fluidized bed process which uses (requires) sized iron ore particles. Select few ores are suitable for direct reduction.
  • The direct reduction process can use natural gas contaminated with inert gases, avoiding the need to remove these gases for other use. However, any inert gas contamination of the reducing gas lowers the effect (quality) of that gas stream and the thermal efficiency of the process.
  • Supplies of powdered ore and raw natural gas are both available in areas such as Northern Australia, avoiding transport costs for the gas. In most cases the DRI plant is located near natural gas source as it is more cost effective to ship the ore rather than the gas.

India is the world’s largest producer of direct-reduced iron, a vital constituent of the steel industry.[4] Many other countries use variants of the process, so providing iron for local engineering industries.

Problems

Directly reduced iron is highly susceptible to oxidation and rusting if left unprotected, and is normally quickly processed further to steel.[citation needed] The bulk iron can also catch fire since it is pyrophoric.[5]

History

Producing sponge iron and then working it was the earliest method used to obtain iron in the Middle East, Egypt, and Europe, where it remained in use until at least the 16th century. There is some evidence that the bloomery method was also used in China, but China had developed blast furnaces to obtain pig iron by 500 BCE.

The advantage of the bloomery technique is that iron can be obtained at a lower furnace temperature, only about 1,100°C or so. The disadvantage, relatively to using a blast furnace, is that only small quantities can be made at a time.

Uses

Sponge iron is not useful by itself, but can be processed to create wrought iron. The sponge is removed from the furnace, called a bloomery, and repeatedly beaten with heavy hammers and folded over to remove the slag, oxidise any carbon or carbide and weld the iron together. This treatment usually creates wrought iron with about three percent slag and a fraction of a percent of other impurities. Further treatment may add controlled amounts of carbon, allowing various kinds of heat treatment (e.g. "steeling").

Today, sponge iron is created by reducing iron ore without melting it. This makes for an energy-efficient feedstock for specialty steel manufacturers which used to rely upon scrap metal.

See also

References

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Direct reduced iron — Als Eisenschwamm (Eisenluppe, Schwammeisen, oft auch DRI für direct reduced iron ) versteht man ein festes Produkt der Direktreduktion. Die Reduktion des Eisenerzes (Hämatit in Pelletform) mit den Gasen Kohlenstoffmonoxid und Wasserstoff ergibt… …   Deutsch Wikipedia

  • direct-reduced iron (DRI) — Смотри железо прямого получения …   Энциклопедический словарь по металлургии

  • Reduced iron — Reduce Re*duce (r[ e]*d[=u]s ), v. t. [imp. & p. p. {Reduced} ( d[=u]st ),; p. pr. & vb. n. {Reducing} ( d[=u] s[i^]ng).] [L. reducere, reductum; pref. red . re , re + ducere to lead. See {Duke}, and cf. {Redoubt}, n.] 1. To bring or lead back to …   The Collaborative International Dictionary of English

  • iron processing — Introduction       use of a smelting process to turn the ore into a form from which products can be fashioned. Included in this article also is a discussion of the mining of iron and of its preparation for smelting.       Iron (Fe) is a… …   Universalium

  • Iron Man's armor — refers to the powered metal suit worn by Tony Stark when he assumes his superhero role of Iron Man. The first version of the armor was created by Stark with the help of Ho Yinsen. Unlike most other superheroes, the appearance of Stark s armor has …   Wikipedia

  • Iron — Fe redirects here. For other uses, see Fe (disambiguation). This article is about the chemical element. For other uses, see Iron (disambiguation). manganese …   Wikipedia

  • iron by hydrogen — Reduce Re*duce (r[ e]*d[=u]s ), v. t. [imp. & p. p. {Reduced} ( d[=u]st ),; p. pr. & vb. n. {Reducing} ( d[=u] s[i^]ng).] [L. reducere, reductum; pref. red . re , re + ducere to lead. See {Duke}, and cf. {Redoubt}, n.] 1. To bring or lead back to …   The Collaborative International Dictionary of English

  • Reduced — Reduce Re*duce (r[ e]*d[=u]s ), v. t. [imp. & p. p. {Reduced} ( d[=u]st ),; p. pr. & vb. n. {Reducing} ( d[=u] s[i^]ng).] [L. reducere, reductum; pref. red . re , re + ducere to lead. See {Duke}, and cf. {Redoubt}, n.] 1. To bring or lead back to …   The Collaborative International Dictionary of English

  • Iron deficiency — For the plant disorder also known as lime induced chlorosis , see Iron deficiency (plant disorder). Iron deficiency Classification and external resources Iron in heme ICD …   Wikipedia

  • Iron ore — Iron ores are rocks and minerals from which metallic iron can be economically extracted. The ores are usually rich in iron oxides and vary in colour from dark grey, bright yellow, deep purple, to rusty red. The iron itself is usually found in the …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.