Whitehead problem


Whitehead problem

In group theory, a branch of abstract algebra, the Whitehead problem is the following question:

:Is every abelian group "A" with Ext1("A", Z) = 0 a free abelian group?

Abelian groups satisfying this condition are sometimes called Whitehead groups, so Whitehead's problem asks: is every Whitehead group free? Shelah (1974) proved that Whitehead's problem was undecidable within standard ZFC set theory.

Refinement

The condition Ext1("A", Z) = 0 can be equivalently formulated as follows: whenever "B" is an abelian group and "f" : "B" → "A" is a surjective group homomorphism whose kernel is isomorphic to the group of integers Z, then there exists a group homomorphism "g" : "A" → "B" with "fg" = id"A".

helah's proof

harvs|txt=yes|authorlink=Saharon Shelah|first=Saharon|last=Shelah|year=1974 showed that, given the canonical ZFC axiom system, the problem was undecidable. More precisely, he showed that:
* If every set is constructible, then every Whitehead group is free;
* If Martin's axiom and the negation of the continuum hypothesis both hold, then there is a non-free Whitehead group.Since the consistency of ZFC implies the consistency of either of the following:
*The axiom of constructibility (which asserts that all sets are constructible);
*Martin's axiom plus the negation of the continuum hypothesis,
Whitehead's problem is undecidable.

Discussion

J. H. C. Whitehead, motivated by the second Cousin problem, first posed the problem in the 1950s. harvtxt|Stein|1951 answered the question in the affirmative for countable groups. Progress for larger groups was slow, and the problem was considered an important one in algebra for some years.

Shelah's result was completely unexpected. While the existence of undecidable statements had been known since Gödel's incompleteness theorem of 1931, previous examples of undecidable statements (such as the continuum hypothesis) had been confined to the realm of set theory. The Whitehead problem was the first purely algebraic problem to be proved undecidable.

harvs|txt=yes|authorlink=Saharon Shelah|last=Shelah|year1=1977|year2=1980 later showed that the Whitehead problem remains undecidable even if one assumes the Continuum hypothesis. Proving that this and other statements about uncountable abelian groups are independent of ZFC shows that the theory of such groups depends very sensitively on the underlying set theory.

ee also

*Free abelian group
*Whitehead group
*List of statements undecidable in ZFC
*Statements true if all sets are constructible

References

*citation|first= Paul C. |last=Eklof|title=Whitehead's Problem is Undecidable|journal=The American Mathematical Monthly|volume= 83|issue= 10|year=1976|pages= 775-788
url=http://links.jstor.org/sici?sici=0002-9890%28197612%2983%3A10%3C775%3AWPIU%3E2.0.CO%3B2-6
An expository account of Shelah's proof.
*springer|id=W/w110030|title=Whitehead problem|author=Eklof, P.C.
*citation|id=MR|0357114| first=S.|last=Shelah|title=Infinite Abelian groups, Whitehead problem and some constructions
journal=Israel Journal of Mathematics |volume=18 |year=1974|pages=243-256

*citation|id=MR|0469757|first=S.|last=Shelah|title=Whitehead groups may not be free, even assuming CH. I
journal=Israel Journal of Mathematics |volume=28 |year=1977|pages=193-203

*citation|id=MR|0594332|first=S.|last=Shelah|title=Whitehead groups may not be free, even assuming CH. II
journal=Israel Journal of Mathematics |volume=35 |year=1980|pages=257-285

*citation|id=MR|0043219
last=Stein|first= Karl
title=Analytische Funktionen mehrerer komplexer Veränderlichen zu vorgegebenen Periodizitätsmoduln und das zweite Cousinsche Problem|journal= Math. Ann. |volume=123|year=1951|pages= 201-222
doi=10.1007/BF02054949


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Whitehead group — in mathematics may mean:* A group W with Ext( W , Z)=0; see Whitehead problem * For a ring, the Whitehead group Wh( A ) of a ring A , equal to K 1(A) * For a group, the Whitehead group Wh( G ) of a group G , equal to K 1(Z [ G ] )/{± G }. Note… …   Wikipedia

  • Whitehead (bird) — Whitehead Conservation status Least Concern ( …   Wikipedia

  • J. H. C. Whitehead — Infobox Scientist name = J. H. C. Whitehead image width = 150px caption = John Henry Constantine Whitehead birth date = birth date|1904|11|11|df=y birth place = Madras (Chennai), India death date = death date and age|1960|5|8|1904|11|11|df=y… …   Wikipedia

  • J. H. C. Whitehead — John Henry Constantine Whitehead Naissance 11 novembre 1904 Chennai (  Inde …   Wikipédia en Français

  • Undecidable problem — In computability theory and computational complexity theory, an undecidable problem is a decision problem for which it is impossible to construct an algorithm that leads to a yes or no answer the problem is not decidable.A decision problem is any …   Wikipedia

  • Gustave Whitehead — Infobox Aviator name=Gustave Whitehead lived=January 1, 1874 – October 10, 1927 image size= caption= full name=Gustave Albin Whitehead place of birth=Leutershausen, Bavaria nationality=German place of death= cause of death=Heart attack… …   Wikipedia

  • Alfred N. Whitehead — Alfred North Whitehead Alfred North Whitehead OM (* 15. Februar 1861 in Ramsgate; † 30. Dezember 1947 in Cambridge (Massachusetts)) war ein britischer Philosoph und Mathematiker. Bekannt wurde Alfred Whitehead durch das Sta …   Deutsch Wikipedia

  • Alfred North Whitehead — OM (* 15. Februar 1861 in Ramsgate; † 30. Dezember 1947 in Cambridge (Massachusetts)) war ein britischer Philosoph und Mathematiker. Bekannt wurde Alfred Whitehead durch das Standardwerk „Principia Mathematica“ über Logik, das er zusammen mit… …   Deutsch Wikipedia

  • Alfred Whitehead — Alfred North Whitehead Alfred North Whitehead OM (* 15. Februar 1861 in Ramsgate; † 30. Dezember 1947 in Cambridge (Massachusetts)) war ein britischer Philosoph und Mathematiker. Bekannt wurde Alfred Whitehead durch das Sta …   Deutsch Wikipedia

  • Unentscheidbares Problem — Eine Eigenschaft auf einer Menge heißt entscheidbar (auch: rekursiv), wenn es ein Entscheidungsverfahren für sie gibt. Ein Entscheidungsverfahren ist ein Algorithmus, der für jedes Element der Menge beantworten kann, ob es die Eigenschaft hat… …   Deutsch Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.