BEAM robotics

BEAM robotics

The word "beam" in BEAM robotics is an acronym for "Biology, Electronics, Aesthetics, and Mechanics". This is a term that refers to a style of robotics that primarily uses simple analog circuits, such as comparators, instead of a microprocessor in order to produce an unusually simple design (in comparison to traditional mobile robots) that trades flexibility for robustness and efficiency in performing the task for which it was designed. Exceptions to the convention of using only analog electronics do exist and these are often colloquially referred to as "mutants".

Mechanisms and principles

The basic BEAM principles focus on a stimulus-response based ability within a machine. The underlying mechanism was invented by Mark W. Tilden where the circuit (or a Nv net of Nv neurons) is used to simulate biological neuron behaviors. Some similar research was previously done by Ed Rietman in 'Experiments In Artificial Neural Networks'. Tilden's circuit is often compared to a shift register, but with several important features making it a useful circuit in a mobile robot.

Other rules that are included (and to varying degrees applied):

# Use the lowest number possible of electronic elements ("keep it simple")
# Recycle and reuse technoscrap
# Use radiant energy (such as solar power)

There are a large number of BEAM robots designed to use solar power from small solar arrays to power a "Solar Engine" which creates autonomous robots capable of operating under a wide range of lighting conditions. Besides the simplistic computational layer of Tilden's "Nervous Networks", BEAM has brought a multitude of useful tools to the roboticist's toolbox. The "Solar Engine" circuit, many H-bridge circuits for small motor control, tactile sensor designs, and meso-scale (palm-sized) robot construction techniques have been documented and shared by the BEAM community [ [http://www.solarbotics.net BEAM community] ] .

BEAM robots

Being focused on "reaction-based" behaviors (as originally inspired by the work of Rod Brooks), BEAM robotics attempts to copy the characteristics and behaviors of natural organisms, with the ultimate goal of domesticating these "wild" robots. BEAM robotics also promotes the value of aesthetics in the design of the device, proving the adage "form follows function".

Disputes in the name

Various people have varying ideas about what BEAM actually stands for. The most widely accepted meaning is "Biology, Electronics, Aesthetics, and Mechanics".

This term originated with Mark Tilden during a discussion at the Ontario Science Center in 1990. Mark was displaying a selection of his original bots which he had built while working at the University of Waterloo.

However, there are many other semi-popular names in use, including:
* Biotechnology Ethology Analogy Morphology
* Building Evolution Anarchy Modularity

Microcontrollers

Unlike many other types of robots controlled by microcontrollers, BEAM robots are built on the principle of using multiple simple behaviors linked directly to sensor systems with little signal conditioning. This design philosophy is closely echoed in the classic book "". Through a series of thought experiments, this book explores the development of complex robot behaviors through simple inhibitory and excitory sensor links to the actuators. Microcontrollers and programming are usually not a part of a traditional (aka., "pure" ) BEAM robot due to the very low-level hardware-centric design philosophy.

There are successful robot designs mating the two technologies. These "hybrids" fulfill a requirement needing robust control systems with the flexibility of dynamic programming, like the "horse-and-rider" topology BEAMbots (ed., The ScoutWalker 3 is such a robot [ [http://www.solarbotics.com/products/index.php?search_id=998 The ScoutWalker 3] ] ). The physical robot body (the "horse") is controlled by traditional BEAM technology, and the microcontroller and programming influences (and if needed, subsumes) the robot body from the "rider" position . The rider component is not necessary for the robot to function, but without it the robot will lose the important influence of a "smarter brain" telling it what to do.

Types

There are various "-trope" BEAMbots, which attempt to achieve a specific goal. Of the series, the phototropes are the most prevalent, as light-seeking would be the most beneficial behavior for a solar-powered robot.

* Audiotropes react to sound sources.
** "Audiophiles" go towards sound sources.
** "Audiophobes" go away from sound sources.
* Phototropes ("light-seekers") react to light sources.
** "Photophiles" (also "Photovores") go toward light sources.
** "Photophobes" go away from light sources.
* Radiotropes react to radio frequency sources.
** "Radiophiles" go toward RF sources.
** "Radiophobes" go away from RF sources.
* Thermotropes react to heat sources.
** "Thermophiles" go toward heat sources.
** "Thermophobes" go away from heat sources.

General

BEAMbots have a variety of movements and positioning mechanisms. These include:
* "Sitters": Unmoving robots that have a physically passive purpose.
** Beacons: Transmit a signal (usually a navigational blip) for other BEAMbots to use.
** Pummers: Display a "light show".
** Ornaments: A catch-all name for sitters that are not beacons or pummers.
* "Squirmers": Stationary robots that perform an interesting action (usually by moving some sort of limbs or appendages).
** Magbots: Utilize magnetic fields for their mode of animation.
** Flagwavers: Move a display (or "flag") around at a certain frequency.
** Heads: Pivot and follow some detectable phenonomena, such as a light (These are popular in the BEAM community. They can be stand-alone robots, but are more often incorporated into a larger robot.).
** Vibrators: Use a small pager motor with an offcenter weight to shake themselves about.
* "Sliders": Robots that move by sliding body parts smoothly along a surface while remaining in contact with it.
** Snakes: Move using a horizontal wave motion.
** Earthworms: Move using a longitudinal wave motion.
* "Crawlers": Robots that move using tracks or by rolling the robot's body with some sort of appendage. The body of the robot is not dragged on the ground.
** Turbots: Roll their entire bodies using their arm(s) or flagella.
** Inchworms: Move part of their bodies ahead, while the rest of the chassis is on the ground.
** Tracked robots: Use treaded wheels, like a tank.
* "Jumpers": Robots which propel themselves off the ground as a means of locomotion.
** Vibrobots: Produce an irregular shaking motion moving themselves around a surface.
** Springbots: Move forward by bouncing in one particular direction.
* "Rollers": Robots that move by rolling all or part of their body.
** Symets: Driven using a single motor with its shaft touching the ground, and moves in different directions depending on which of several symmetric contact points around the shaft are touching the ground.
** Solarrollers: Solar-powered cars that use a single motor driving one or more wheels; often designed to complete a fairly short, straight and level course in the shortest amount of time.
** Poppers: Use two motors with separate solar engines; rely on differential sensors to achieve a goal.
** Miniballs: Shift their center of mass, causing their spherical bodies to roll.
* "Walkers": Robots that move using legs with differential ground contact.
** Motor Driven: Use motors to move their legs (typically 3 motors or less).
** Muscle Wire Driven: Utilize Nitinol (nickel - titanium alloy) wires for their leg actuators.
* "Swimmers": Robots that move on or below the surface of a liquid (typically water).
** Boatbots: Operate on the surface of a liquid.
** Subbots: Operate under the surface of a liquid.
* "Fliers": Robots that move through the air for sustained periods.
** Helicopters: Use a powered rotor to provide both lift and propulsion.
** Planes: Use fixed or flapping wings to generate lift.
** Blimps: Use a neutrally-buoyant balloon for lift.
* "Climbers": Robot that moves up or down a vertical surface, usually on a track such as a rope or wire.

Applications and Current Progress

At present, autonomous robots have seen limited commercial application, with some exceptions such as the iRobot Roomba robotic vacuum cleaner and a few lawn-mowing robots. The main practical application of BEAM has been in the rapid prototyping of motion systems and hobby/education applications. Mark Tilden has successfully used BEAM for the prototyping of products for Wow-Wee Robotics, as evidenced by the "proto-Robosapien" "BIODroid" [ [http://www.solarbotics.net/gallery/Wowwee-Robosapien?page=1 "BIODroid" Prototype gallery of the Robosapien] ] , B.I.O.Bug, and RoboRaptor. [http://www.solarbotics.com Solarbotics Ltd.] , Bug'n'Bots, [http://www.jcminventures.com JCM InVentures Inc.] , and [http://www.pagermotors.com PagerMotors.com] have also brought BEAM-related hobby and educational goods to the marketplace.

Aspiring BEAM roboticists often have problems with the lack of direct control over "pure" BEAM control circuits. There is ongoing work to evaluate Biomorphic techniques that copy natural systems because they seem to have an incredible performance advantage over traditional techniques. There are many examples of how tiny insect brains are capable of far better performance than the most advanced microelectronics.

Another barrier to widespread application of BEAM technology is the perceived random nature of the 'nervous network', which requires new techniques to be learned by the builder to successfully diagnose and manipulate the characteristics of the circuitry. A think-tank of international academics [ [http://www.ine-web.org/] Institute of Neuromorphic Engineering (INE)] meet annually in Telluride, Colorado to address this issue directly, and until recently, Mark Tilden has been part of this effort (he had to withdraw due to his new commercial commitments with Wow-Wee toys).

Having no long-term memory, BEAM robots generally do not learn from past behavior. However, there has been work in the BEAM community to address this issue. One of the most advanced BEAM robots in this vein is Bruce Robinson's Hider [ [http://www3.telus.net/rfws/beam/hider/m_hidr_00.html Bruce Robinson's Hider] ] , which has an impressive degree of capability for a microprocessor-less design.

Publications

Patents
* - "Method of and Apparatus for Controlling Mechanism of Moving Vehicle or Vehicles" - Tesla's "telautomaton" patent; First logic gate.
* - "Adaptive robotic nervous systems and control circuits therefor" - Tilden's patent; A self-stabilizing control circuit utilizing pulse delay circuits for controlling the limbs of a limbed robot, and a robot incorporating such a circuit; artificial "neurons".

Books and papers
* Conrad, James M., and Jonathan W. Mills, "Stiquito: advanced experiments with a simple and inexpensive robot", "The future for nitinol-propelled walking robots", Mark W. Tilden. Los Alamitos, Calif., IEEE Computer Society Press, c1998. LCCN 96029883 ISBN 0-8186-7408-3
* Tilden, Mark W., and Brosl Hasslacher, " [http://www.solarbotics.net/library/pdflib/pdf/living_machines.pdf Living Machines] ". Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
* Tilden, Mark W. and Brosl Hasslacher, " [http://downloads.solarbotics.net/pdf/living_biomech_machines.pdf The Design of "Living" Biomech Machines: How low can one go?"] ". Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
* Still, Susanne, and Mark W. Tilden, " [http://www.solarbotics.net/library/pdflib/pdf/stirling97_still_tilden.pdf Controller for a four legged walking machine] ". ETH Zuerich, Institute of Neuroinformatics, and Biophysics Division, Los Alamos National Laboratory.
* Braitenberg, Valentino, "Vehicles: Experiments in Synthetic Psychology", 1984. ISBN 0-262-52112-1
* Rietman, Ed, "Experiments In Artificial Neural Networks", 1988. ISBN 0-8306-0237-2
* Tilden, Mark W., and Brosl Hasslacher, "Robotics and Autonomous Machines": "The Biology and Technology of Intelligent Autonomous Agents", LANL Paper ID: LA-UR-94-2636, Spring 1995.
* Dewdney, A.K. "Photovores: Intelligent Robots are Constructed From Castoffs". Scientific American Sept 1992, v267, n3, p42(1)
* Smit, Michael C., and Mark Tilden, "Beam Robotics". Algorithm, Vol. 2, No. 2, March 1991, Pg 15-19.
* Hrynkiw, David M., and Tilden, Mark W., "Junkbots, Bugbots, and Bots on Wheels", 2002. ISBN 0-07-222601-3 ( [http://junkbots.solarbotics.com Book support website] )

ee also

"People"
* Mark Tilden: a robotics physicist.
* Brosl Hasslacher: a theoretical physicist.
* William Grey Walter: neurophysiologist and roboticist."Robotics"
* Wired intelligence: a robot that has no programmed microprocessor and possesses analog electronics between its sensors and motors that gives it seemingly intelligent actions.
* Behavior-based robotics: branch of robotics that does not use an internal model of the environment.
* Emergent behavior: the process of complex pattern formation from simpler rules. "BEAMbot types"
*Analog robot: a robot that uses analog circuitry to go towards a simple goal
* Photovore: a robot that seeks light and uses it to power itself.
* Solarroller: a dragster robot run by solar light.
* Turtle (robot): early forms of the turtlebot were the beginning of BEAM work
* Stiquito: a hobbyist robot designed as a nitinol-powered hexapod walker"Other"
* List of protosciences: list of new area of scientific endeavor in the process of becoming established."Elements"
* Nv network: Nv neurons connected in a loop.
* Monocore: This term can specifically mean one Nv neurons which is a simple oscillator. More generally, though, it is used to denote the connection of a pair of bicores.
* Bicores: Nv network loop-topology with two Nv neurons. There are grounded bicores and suspended bicores.
* Tricore: Nv network loop-topology with three Nv neurons.
* Microcores: Closed-loop implementation of a nervous net responsible for direct actuator control. Any Nv network greater than or equal to four, but specifically any multiple numeric prefixed cores (such as a Quadcore, Quincore, Hexcore, Septcore, Octacore, etc.)

Cited references

External articles and other references

;Main

* Robocray, " [http://robocrazy.org/forum/index.php Robocrazy Robotics Community Forum] " - Many resources and discussion on beam robot
* Solarbotics, " [http://www.solarbotics.net BEAM robotics community server] " - Many resources but not updated since 2003.
* SyDigital, " [http://www.beam-online.com/ BEAM online] ". 2003.
* [http://www.beam-wiki.org/wiki/index.php?title=Main_Page BEAM Community Wiki]
* [http://www.beam-wiki.org/wiki/index.php?title=FAQ BEAM Community FAQ]

;Other resources
* Bhoite, Mohit, " [http://mobots.solarbotics.net Mobots] " - Mohit Bhoite's BEAM robots from India
* Shank, Alex, " [http://beam-life.solarbotics.net/ BEAM-life] ". 2002,
* Yahoo! robotics , " [http://groups.yahoo.com/group/beam/messages/ BEAM Robotics group] - based on Nervous network technology".
* " [http://costaricabeam.solarbotics.net CostaRicaBeam] " - Extensive BEAM circuit collection.
* " [http://beamindia.solarbotics.net BEAMINDIA] " - Vishy's experiments with building and learning robotics in India
* " [http://www.xs4all.nl/~sbolt/e-index.html Robots] ". PiTronics (xs4all.nl), 9 October 2004.
* Van Zoelen, A. A., " [http://vsim.freeservers.com/amiller/microcore.html The MicroCore] ". [http://vsim.freeservers.com/robotics.html BEAM Robotics] .
* McManis, Chuck, " [http://www.mcmanis.com/chuck/robotics/tutorial/h-bridge/ H-Bridges] : Theory and Practice". December 2003.
* Silveira, César Blum, " [http://beaminvasion.solarbotics.net/ Beam Invasion] ". 2005.
* Boerema Jr., Clifford L., " [http://www.geocities.com/droidmakr/ Droidmakr's Workshop] ".
* D.Mancini, " [http://beamitaly.solarbotics.net BeamItaly] - The Italian site dedicated to BEAM philosophy.", 1998.
* " [http://www.beam-wiki.org/wiki BEAM Wiki] " ( [http://www.beam-wiki.org/ News Page of the BEAM Wiki] )

;BEAMbots
* Robinson, Bruce N., " [http://www3.telus.net/rfws/beam/hider/m_hidr_00.html Hider] ". Robinson's Robots, 2005.
* Solarbotics, " [http://www.solarbotics.com/products/index.php?search_id=998 The ScoutWalker 3] ". Competition robot kit. ;Interviews and news
* DevLib.Org " [http://www.devlib.org/articles/interviews/mark-tilden-robosapiens-inventor/ Mark Tilden Interview] ". December, 2006.
* Walke, Kevin," [http://www.exhibitresearch.com/tilden/ Mark Tilden Interview] ". Exhibit Research, March 2000.
* Fang, Chiu-Yuan, " [http://www.geocities.com/SouthBeach/6897/beam2.html?200510 BEAM Robotics] ". 1999. (Historical site)
* Elner, Tom, TomboT.net [http://www.tombot.net]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Beam (Robotik) — BEAM ist ein Sammelbegriff für eine bestimmte Sorte von Robotern, die primär analoge Schaltkreise nutzen (anstelle eines Mikrocontrollers), um das Verhalten eines natürlichen Organismus zu kopieren. Die Abkürzung BEAM steht für: Biologie,… …   Deutsch Wikipedia

  • Beam — may refer to: *Beam (structure), a construction element *Beam (nautical), the most extreme width (or breadth) of a nautical vessel, or a point alongside the ship at the mid point of its length *A narrow, propagating stream of particles or energy …   Wikipedia

  • Beam — est un domaine de la robotique qui cherche à construire des robots avec le minimum de composants électroniques. La condition sinéquanone pour qu un robot soir considérré comme BEAM , inventée par le roboticien Mark Tilden, est de réduire au… …   Wikipédia en Français

  • BEAM — BEAM[1] (acronyme qui signifie « Biology, Electronics, Aesthetics, and Mechanics ») est un concept robotique, créé par le roboticien Mark Tilden (en), qui cherche à construire des robots avec le minimum de composants électroniques …   Wikipédia en Français

  • Robotics conventions — There are many conventions used in the robotics research field. This article summarises these conventions. Contents 1 Line representations 2 Non minimal vector coordinates 2.1 Plücker coordinates …   Wikipedia

  • Topic outline of robotics — Robotics is the science and technology of designing, making, and applying robots, including theory from many contributing fields. A robot is a mechanical or virtual, artificial . It is usually an electromechanical system, which, by its appearance …   Wikipedia

  • Behavior-based robotics — or behavioral robotics or behavioural robotics is the branch of robotics that incorporates modular or behavior based AI (BBAI). How they work Most behavior based systems are also reactive, which means they use relatively little internal variable… …   Wikipedia

  • Crawler (BEAM) — In BEAM robotics, a Crawler is a robot that has a mode of locomotion by tracks or by transferring the robot s body on limbs or appendages. These do not drag parts of their body on the ground. Genera Turbots : Rolls over and over as a mode of …   Wikipedia

  • Climber (BEAM) — In BEAM robotics, a Climber is a robot that goes upward or downward with gradual or continuous progress on a track (such as a rope or wire). v · …   Wikipedia

  • Outline of robotics — See also: Index of robotics articles The following outline is provided as an overview of and topical guide to robotics: Robotics – branch of technology that deals with the design, construction, operation, structural disposition, manufacture and… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”