Staring array

Staring array

A staring array, staring-plane array, focal-plane array (FPA) or focal-plane is an image sensing device consisting of an array (typically rectangular) of light-sensing pixels at the focal plane of a lens. FPAs are used most commonly for imaging purposes (e.g. taking pictures or video imagery), but can also be used for non-imaging purposes such as spectrometry, LIDAR, and wave-front sensing. Technically the term "FPA" can refer to a variety of imaging device types, but in common usage it refers to two-dimensional devices that are sensitive in the infrared spectrum. Devices sensitive in other spectra are usually referred to by other terms, such as CCD (charge-coupled device) and CMOS image sensor in the visible spectrum. FPAs operate by detecting photons at particular wavelengths and then generating an electrical charge, voltage, or resistance in relation to the number of photons detected at each pixel. This charge, voltage, or resistance is then measured, digitized, and used to construct an image of the object, scene, or phenomenon that emitted the photons.

Applications for infrared FPAs include missile or related weapons guidance sensors, infrared astronomy, manufacturing inspection, thermal imaging for firefighting, medical imaging, and infrared phenomenology (such as observing combustion, weapon impact, rocket motor ignition and other events that are interesting in the infrared spectrum).

Staring arrays are distinct from scanning array and TDI (time-domain integration) imagers in that they image the desired field of view without scanning. Scanning arrays are constructed from linear arrays (or sometime very narrow 2-D arrays) that are rastered across the desired field of view using a rotating or oscillating mirror to construct a 2-D image over time. A TDI imager operates in similar fashion to a scanning array except that it images perpendicularly to the motion of the camera. A staring array is analogous to the film in a typical camera; it directly captures a 2-D image projected by the lens at the image plane. A scanning array is analogous to looking through a narrow slit, and then rastering your head and the slit perpendicularly to the direction of the slit to build a 2-D image. A TDI imager is analogous to looking through a vertical slit out the side window of a moving car, and building a long, continuous image as the car passes the landscape.

Staring arrays are superior to scanning arrays in every meaningful performance aspect, and the latter were developed and used only because of historical difficulties in fabricating 2-D arrays of sufficient size and quality for direct 2-D imaging. Modern FPAs are available with up to 2048 x 2048 pixels, and larger sizes are in development by multiple manufacturers. 320 x 256 and 640 x 480 arrays are available and affordable even for non-military, non-scientific applications.

The difficulty in constructing high-quality, high-resolution FPAs derives from the materials used. Whereas visible imagers such as CCD and CMOS image sensors are fabricated from silicon, using mature and well-understood processes, IR sensors must be fabricated from other, more exotic materials because silicon is sensitive only in the visible and near-IR spectra. Infrared-sensitive materials commonly used in IR detector arrays include mercury-cadmium-telluride (HgCdTe, "MerCad", or "MerCadTel"), Indium Antimonide (InSb, pronounced "Inns-Bee"), Indium Gallium Arsenide (InGaAs, pronounced "Inn-Gas"), and Vanadium Oxide (VOx, pronounced "Vox"). A variety of lead salts can also be used, but are less common today. None of these materials can be grown into crystals anywhere near the size of modern silicon crystals, nor do the resulting wafers have nearly the uniformity of silicon. Furthermore, the materials used to construct arrays of IR-sensitive pixels cannot be used to construct the electronics needed to transport the resulting charge, voltage, or resistance of each pixel to the measurement circuitry. This set of functions is implemented on a chip called the multiplexer, or read-out IC (ROIC), and is typically fabricated in silicon using standard CMOS processes. The detector array is then hybridized or bonded to the ROIC, typically using indium bump-bonding, and the resulting assembly is called an FPA.

Some materials (and the FPAs fabricated from them) operate only at cryogenic temperatures, and others (such as VOx microbolometers) can operate at uncooled temperatures. Some devices are only practical to operate cryogenically as otherwise the thermal noise would swamp the detected signal. Devices can be cooled evaporatively, typically by liquid nitrogen (LN2) or liquid helium, or by using a thermo-electric cooler.

A peculiar aspect of nearly all IR FPAs is that the electrical responses of the pixels on a given device tend to be non-uniform. In a perfect device every pixel would output the same electrical signal when given the same number of photons of appropriate wavelength. In practice nearly all FPAs have both significant pixel-to-pixel offset and pixel-to-pixel photo-response non-uniformity (PRNU). When un-illuminated, each pixel has a different "zero-signal" level, and when illuminated the delta in signal is also different. This non-uniformity makes the resulting images impractical for use until they have been processed to normalize the photo-response. This correction process requires a set of known characterization data, collected from the particular device under controlled conditions. The data correction can be done in software, in a DSP or FPGA in the camera electronics, or even on the ROIC in the most modern of devices.

The low volumes, rarer materials, and complex processes involved in fabricating and using IR FPAs makes them far more expensive than visible imagers of comparable size and resolution.

Staring plane arrays are used in modern air to air missiles and anti-tank missiles such as the AIM-9X Sidewinder, ASRAAM [ [ Air-to-Air Weapons - Royal Air Force] ] and Javelin. [ [ FGM-148 Javelin - Designation Systems] ]


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Electro-optical MASINT — is a subdiscipline of Measurement and Signature Intelligence, (MASINT) and refers to intelligence gathering activities which bring together disparate elements that do not fit within the definitions of Signals Intelligence (SIGINT), Imagery… …   Wikipedia

  • Mohammad Ataul Karim — Born May 4, 1953 (1953 05 04) (age 58) Sylhet, Bangladesh Citizenship Bangladesh / USA …   Wikipedia

  • National technical means of verification — is a phrase that first appeared, but was not detailed, in the Strategic Arms Limitation Treaty (SALT) between the US and USSR. At first, the phrase reflected a concern that the Soviet Union could be particularly disturbed by public recognition of …   Wikipedia

  • List of sensors — * Accelerometer * Touch sensor * Active pixel sensor * Air flow meter * Alarm sensor * Bedwetting alarm * Bhangmeter * Biochip * Biosensor * Breathalyzer * Capacitance probe * Carbon paste electrode * Carbon monoxide detector * Catadioptric… …   Wikipedia

  • Lead zirconate titanate — (Lead [Zirconium| x Titanium|1 x ] Oxygen|3 0 …   Wikipedia

  • High speed photography — [ Eadweard Muybridge, first published in 1887.] High Speed Photography is the science of taking pictures of very fast phenomena. In 1948, the Society of Motion Picture and Television Engineers (SMPTE) defined high speed photography as any set of… …   Wikipedia

  • Système de guidage — Une bombe guidée Paveway frappe un objectif souterrain …   Wikipédia en Français

  • Iowa class battleship — The Iowa class battleships were a class of six fast battleships ordered by the United States Navy in 1939 and 1940 to escort the Fast Carrier Task Forces that would operate in the Pacific Theater of World War II. Four were completed in the early… …   Wikipedia

  • Dirac equation — Quantum field theory (Feynman diagram) …   Wikipedia

  • LIDAR — A FASOR used at the Starfire Optical Range for LIDAR and laser guide star experiments is tuned to the sodium D2a line and used to excite sodium atoms in the upper atmosphere …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.