Molecular laser isotope separation


Molecular laser isotope separation

Molecular laser isotope separation (MLIS) is a method of isotope separation, where specially tuned lasers are used to separate isotopes of uranium using selective ionization of hyperfine transitions of uranium hexafluoride molecules. It is similar to AVLIS. Its main advantage over AVLIS is low energy consumption and use of uranium hexafluoride instead of vaporized uranium.

MLIS was conceived in 1961 at the Los Alamos National Laboratory.

MLIS operates in cascade setup, like the gaseous diffusion process. Instead of vaporized uranium as in AVLIS the working medium of the MLIS is uranium hexafluoride which requires a much lower temperature to vaporize. The UF6 gas is mixed with a suitable carrier gas (a noble gas including some hydrogen) which allows the molecules to remain in the gaseous phase after being cooled by expansion through a supersonic Laval nozzle. A scavenger gas (e.g. methane) is also included in the mixture to bind with the fluorine atoms after they are dissociated from the UF6 and inhibit their recombination with the enriched UF5 product. In the first stage the expanded and cooled stream of UF6 is irradiated with an infrared laser operating at the wavelength of 16 µm. The mix is then irradiated with another laser, either infrared or ultraviolet, whose photons are selectively absorbed by the excited 235UF6, causing its photolysis to 235UF5 and fluorine. The resultant enriched UF5 forms a solid which is then separated from the gas by filtration or a cyclone separator. The precipitated UF5 is relatively enriched with 235UF5 and after conversion back to UF6 it is fed to the next stage of the cascade to be further enriched. The laser for the excitation is usually a carbon dioxide laser with output wavelength shifted from 10.6 µm to 16 µm; the photolysis laser may be a XeCl excimer laser operating at 308 nm, however infrared lasers are mostly used in existing implementations.

The process is considerably complex in that many mixed complexes of UFx are formed contaminating the product, with many technical difficulties. United States, France, United Kingdom, Germany and South Africa reported termination of their MLIS programs, however Japan has a small scale program in operation.

The Commonwealth Scientific and Industrial Research Organisation in Australia has developed the SILEX pulsed laser separation process. GE, Cameco and Hitachi are currently involved in developing it for commercial use. Silex information

See also

External links


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Atomic vapor laser isotope separation — AVLIS Is an acronym which stands for atomic vapor laser isotope separation and is a method by which specially tuned lasers are used to separate isotopes of uranium using selective ionization of hyperfine transitions. In the largest technology… …   Wikipedia

  • Isotope separation — is the process of concentrating specific isotopes of a chemical element by removing other isotopes, for example separating natural uranium into enriched uranium and depleted uranium. This is a crucial process in the manufacture of uranium fuel… …   Wikipedia

  • isotope — isotopic /uy seuh top ik/, adj. isotopically, adv. /uy seuh tohp /, n. Chem. any of two or more forms of a chemical element, having the same number of protons in the nucleus, or the same atomic number, but having different numbers of neutrons in… …   Universalium

  • Isotope — This article is about the atomic variants of chemical elements. For the British jazz fusion band, see Isotope (band). Isotopes redirects here. For the minor league baseball team, see Albuquerque Isotopes. Isotopes are variants of atoms of a… …   Wikipedia

  • Matrix-assisted laser desorption/ionization — MALDI TOF mass spectrometer Matrix assisted laser desorption/ionization (MALDI) is a soft ionization technique used in mass spectrometry, allowing the analysis of biomolecules (biopolymers such as DNA, proteins, peptides and sugars) and large… …   Wikipedia

  • Enriched uranium — Proportions of uranium 238 (blue) and uranium 235 (red) found naturally versus enriched grades Enriched uranium is a kind of uranium in which the percent composition of uranium 235 has been increased through the process of isotope separation.… …   Wikipedia

  • Silex Process — SILEX is an acronym for Separation of Isotopes by Laser Excitation Cite web|url=http://www.silex.com.au/|accessdate=2006 04 21|title=Silex Systems, Ltd. homepage|publisher=Silex Systems Limited] , a technology developed in the 1990s for isotope… …   Wikipedia

  • Enriquecimiento de uranio — El enriquecimiento de uranio es el proceso al cual es sometido el uranio natural para obtener el isótopo 235U conocido como uranio enriquecido. El contenido porcentual de 235U en el uranio natural ha sido incrementado a través de un proceso de… …   Wikipedia Español

  • Uranium — (pronEng|jʊˈreɪniəm) is a silvery gray metallic chemical element in the actinide series of the periodic table that has the symbol U and atomic number 92. It has 92 protons and 92 electrons, 6 of them valence electrons. It can have between 141 and …   Wikipedia

  • AVLIS — es un acrónimo de la expresión inglesa “Atomic Vapor Laser Isotope Separation” (separación de isótopos de vapor atómico por láser) y es un método por el que se utilizan unos láseres sintonizados especialmente para separar isótopos de uranio… …   Wikipedia Español


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.