Poisson's ratio

Poisson's ratio

Poisson's ratio ("), named after Simeon Poisson, is the ratio of the relative contraction strain, or transverse strain (normal to the applied load), divided by the relative extension strain, or axial strain (in the direction of the applied load).

When a sample of material is stretched in one direction, it tends to contract (or rarely, expand) in the other two directions. Conversely, when a sample of material is compressed in one direction, it tends to expand (or rarely, contract) in the other two directions. Poisson's ratio (ν) is a measure of this tendency.

The Poisson's ratio of a stable material cannot be less than −1.0 nor greater than 0.5 due to the requirement that the shear modulus and bulk modulus have positive values. Most materials have between 0.0 and 0.5. Cork is close to 0.0, showing almost no Poisson contraction, most steels are around 0.3, and rubber is nearly incompressible and so has a Poisson ratio of nearly 0.5. A perfectly incompressible material deformed elastically at small strains would have a Poisson's ratio of exactly 0.5. Some materials, mostly polymer foams, have a negative Poisson's ratio; if these auxetic materials are stretched in one direction, they become thicker in perpendicular directions.

Assuming that the material is compressed along the axial direction:

: u = -frac{varepsilon_mathrm{trans{varepsilon_mathrm{axial = -frac{varepsilon_mathrm{x{varepsilon_mathrm{y

where: u is the resulting Poisson's ratio,:varepsilon_mathrm{trans} is transverse strain (negative for axial tension, positive for axial compression):varepsilon_mathrm{axial} is axial strain (positive for axial tension, negative for axial compression).

Cause of Poisson’s effect

On the molecular level, Poisson’s effect is caused by slight movements between molecules and the stretching of molecular bonds within the material lattice to accommodate the stress. When the bonds elongate in the stress direction, they shorten in the other directions. This behavior multiplied millions of times throughout the material lattice is what drives the phenomenon.

Generalized Hooke's law

For an isotropic material, the deformation of a material in the direction of one axis will produce a deformation of the material along the other axes in three dimensions. Thus it is possible to generalize Hooke's Law into three dimensions:: varepsilon_x = frac {1}{E} left [ sigma_x - u left ( sigma_y + sigma_z ight ) ight ]

: varepsilon_y = frac {1}{E} left [ sigma_y - u left ( sigma_x + sigma_z ight ) ight ]

: varepsilon_z = frac {1}{E} left [ sigma_z - u left ( sigma_x + sigma_y ight ) ight ] where: varepsilon_x, varepsilon_y and varepsilon_z are strain in the direction of x, y and z axis: sigma_x , sigma_y and sigma_z are stress in the direction of x, y and z axis: E is Young's modulus (the same in all directions: x, y and z for isotropic materials): u is Poisson's ratio (the same in all directions: x, y and z for isotropic materials)

Volumetric change

The relative change of volume "ΔV"/"V" due to the stretch of the material can be calculated using a simplified formula (only for small deformations):

:frac {Delta V} {V} = (1-2 u)frac {Delta L} {L}

where: V is material volume: Delta V is material volume change: L is original length, before stretch: Delta L is the change of length: Delta L = L_mathrm{new} - L_mathrm{old}

Width change

If a rod with diameter (or width, or thickness) "d" and length "L" is subject to tension so that its length will change by "ΔL" then its diameter "d" will change by (the value is negative, because the diameter will decrease with increasing length):

:Delta d = - d cdot u Delta L} over L}

The above formula is true only in the case of small deformations; if deformations are large then the following (more precise) formula can be used:

:Delta d = - d cdot left( 1 - {left( 1 + Delta L} over L} ight)}^{- u} ight)

where: d is original diameter: Delta d is rod diameter change: u is Poisson's ratio: L is original length, before stretch: Delta L is the change of length.

Orthotropic materials

For Orthotropic material, such as wood in which Poisson's ratio is different in each direction (x, y and z axis) the relation between Young's modulus and Poisson's ratio is described as follows:

:frac{ u_{yx{E_y} = frac{ u_{xy{E_x} qquadfrac{ u_{zx{E_z} = frac{ u_{xz{E_x} qquadfrac{ u_{yz{E_y} = frac{ u_{zy{E_z} qquad

where:{E}_i is a Young's modulus along axis i: u_{jk} is a Poisson's ratio in plane jk

Poisson's ratio values for different materials

[
glass component additions on Poisson's ratio of a specific base glass. [ [http://www.glassproperties.com/poisson_ratio/ Poisson's ratio calculation of glasses] ] ]

Negative Poisson's ratio materials

Some materials known as auxetic materials display a negative Poisson’s ratio. When subjected to strain in a longitudinal axis, the transverse strain in the material will actually be positive (i.e. it would increase in cross sectional area). For these materials, it is usually due to uniquely oriented, hinged molecular bonds. In order for these bonds to stretch in the longitudinal direction, the hinges must ‘open’ in the transverse direction, effectively exhibiting a positive strain. [ [http://silver.neep.wisc.edu/~lakes/Poisson.html Negative Poisson's ratio ] ]

Applications of Poisson's effect

One area in which Poisson's effect has a considerable influence is in pressurized pipe flow. When the air or liquid inside a pipe is highly pressurized it exerts a uniform force on the inside of the pipe, resulting in a radial stress within the pipe material. Due to Poisson's effect, this radial stress will cause the pipe to slightly increase in diameter and decrease in length. The decrease in length, in particular, can have a noticeable effect upon the pipe joints, as the effect will accumulate for each section of pipe joined in series. A restrained joint may be pulled apart or otherwise prone to failure. [http://www.cpchem.com/hb/getdocanon.asp?doc=135&lib=CPC-Portal]

Another area of application for Poisson's effect is in the realm of structural geology. Rocks, just as most materials, are subject to Poisson's effect while under stress and strain. In a geological timescale, excessive erosion or sedimentation of Earth's crust can either create or remove large vertical stresses upon the underlying rock. This rock will expand or contract in the vertical direction as a direct result of the applied stress, and it will also deform in the horizontal direction as a result of Poisson's effect. This change in strain in the horizontal direction can affect or form joints and dormant stresses in the rock. [http://www.geosc.psu.edu/~engelder/geosc465/lect18.rtf]

ee also

*3-D elasticity
*Hooke's Law
*Impulse excitation technique
*Orthotropic material
*Coefficient of thermal expansion

References

External links

* [http://silver.neep.wisc.edu/~lakes/PoissonIntro.html Meaning of Poisson's ratio]
* [http://silver.neep.wisc.edu/~lakes/Poisson.html Negative Poisson's ratio materials]
* [http://home.um.edu.mt/auxetic More on negative Poisson's ratio materials (auxetic)]
* [http://www.webelements.com/webelements/properties/text/definitions/poissons-ratio.html Poisson's ratio]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Poisson's ratio — n. [see POISSON DISTRIBUTION] Physics an elastic constant of a material equal to the ratio of contraction sideways to expansion lengthwise when the material is stretched …   English World dictionary

  • Poisson's ratio — Poisson s ratio. См. Коэффициент Пуассона. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт Петербург, 2003 г.) …   Словарь металлургических терминов

  • Poisson’s ratio — Puasono santykis statusas T sritis fizika atitikmenys: angl. Poisson number; Poisson’s ratio vok. Poisson Konstante, f; Poissonsche Konstante, f; Poissonsche Zahl, f rus. коэффициент поперечного сжатия, m; коэффициент Пуассона, m pranc.… …   Fizikos terminų žodynas

  • Poisson’s ratio — Puasono santykis statusas T sritis Standartizacija ir metrologija apibrėžtis Tempiamo arba gniuždomo bandinio skersinės ir išilginės santykinių deformacijų dalmens absoliučioji vertė. atitikmenys: angl. Poisson number; Poisson’s ratio vok.… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Poisson’s ratio — Puasono koeficientas statusas T sritis fizika atitikmenys: angl. Poisson’s ratio vok. Poisson Konstante, f; Poissonscher Koeffizient, m rus. коэффициент Пуассона, m pranc. coefficient de Poisson, m; rapport de Poisson, m …   Fizikos terminų žodynas

  • poisson's ratio — noun also poisson ratio Usage: usually capitalized P Etymology: after S. Poisson : the ratio of transverse to longitudinal strain in a material under tension …   Useful english dictionary

  • Poisson’s ratio — Puasono koeficientas statusas T sritis Standartizacija ir metrologija apibrėžtis Tempiamų arba gniuždomų kūno sluoksnių skersinės ir išilginės deformacijų dalmens absoliučioji vertė. atitikmenys: angl. Poisson’s ratio vok. Poisson Konstante, f;… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • Poisson's ratio — Physics. the ratio, in an elastic body under longitudinal stress, of the transverse strain to the longitudinal strain. Also, Poisson ratio. [1925 30; see POISSON DISTRIBUTION] * * * …   Universalium

  • Poisson's ratio — noun Etymology: S. Poisson Date: 1886 the ratio of transverse to longitudinal strain in a material under tension …   New Collegiate Dictionary

  • Poisson's ratio — noun Of a material in tension or compression, the ratio of the strain in the direction of the applied load to the strain normal to the load. Abbreviated ν …   Wiktionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”