Pauli matrices

Pauli matrices

The Pauli matrices are a set of 2 × 2 complex Hermitian and unitary matrices. Usually indicated by the Greek letter 'sigma' (σ), they are occasionally denoted with a 'tau' (τ) when used in connection with isospin symmetries. They are::sigma_1 = sigma_x =egin{pmatrix}0&1\1&0end{pmatrix}

:sigma_2 = sigma_y =egin{pmatrix}0&-i\i&0end{pmatrix}

:sigma_3 = sigma_z =egin{pmatrix}1&0\0&-1end{pmatrix}.

The name refers to Wolfgang Pauli.

Algebraic properties

:sigma_1^2 = sigma_2^2 = sigma_3^2 = egin{pmatrix} 1&0\0&1end{pmatrix} = Iwhere "I" is the identity matrix.

*The determinants and traces of the Pauli matrices are:

:egin{matrix}det (sigma_i) &=& -1 & \ [1ex] operatorname{Tr} (sigma_i) &=& 0 & quad hbox{for} i = 1, 2, 3end{matrix}

From above we can deduce that the eigenvalues of each σ"i" are ±1.

*Together with the identity matrix I (which is sometimes written as σ0), the Pauli matrices form an orthogonal basis, in the sense of Hilbert-Schmidt, for the real Hilbert space of 2 × 2 complex Hermitian matrices, or the complex Hilbert space of all 2 × 2 matrices.

Commutation relations

The Pauli matrices obey the following commutation and anticommutation relations:

:egin{matrix} [sigma_a, sigma_b] &=& 2 i sum_c varepsilon_{a b c},sigma_c \ [1ex] {sigma_a, sigma_b} &=& 2 delta_{a b} cdot Iend{matrix}

where varepsilon_{abc} is the Levi-Civita symbol, delta_{ab} is the Kronecker delta, and I is the identity matrix.

The above two relations can be summarized as:

:sigma_a sigma_b = delta_{ab} cdot I + i sum_c varepsilon_{abc} sigma_c ,.

For example, :egin{matrix}sigma_1sigma_2 &=& isigma_3,\sigma_2sigma_3 &=& isigma_1,\sigma_2sigma_1 &=& -isigma_3,\sigma_1sigma_1 &=& I.\end{matrix}

The Pauli vector is defined by:vec{sigma} = sigma_1 hat{x} + sigma_2 hat{y} + sigma_3 hat{z} ,and the summary equation for the commutation relations can be used to prove:(vec{a} cdot vec{sigma})(vec{b} cdot vec{sigma}) = vec{a} cdot vec{b} + i vec{sigma} cdot ( vec{a} imes vec{b} ) quad quad quad quad (1) ,:(as long as the vectors "a" and "b" commute with the pauli matrices)as well as:e^{i (vec{a} cdot vec{sigma})} = cos{a} + i (hat{n} cdot vec{sigma}) sin{a} quad quad quad quad quad quad (2) ,for vec{a} = a hat{n} .

SU(2)

The matrix group SU(2) is a Lie group, and its Lie algebra is the set of the anti-Hermitian 2×2 matrices with trace 0. Direct calculation shows that the Lie algebra su(2) is the 3 dimensional real algebra spanned by the set {"i" σ"j"}. In symbols,

:; operatorname{su}(2) = operatorname{span} { i sigma_1, i sigma_2 , i sigma_3 }.

As a result, "i" σ"j"s can be seen as infinitesimal generators of SU(2).

A Cartan decomposition of SU(2)

This relationship between the Pauli matrices and SU(2) can be explored further, as can be seen from the following simple example. We can write

:; operatorname{su}(2) = operatorname{span} {i sigma_2} oplus operatorname{span} { i sigma_1, i sigma_3}.

We put

:; mathfrak{k} = operatorname{span} {i sigma_3},

and

:; mathfrak{p} = operatorname{span} { i sigma_1, i sigma_2}

Using the algebraic identities listed in the previous section, it can be verified that mathfrak{k} and mathfrak{p} form a Cartan pair of the Lie algebra SU(2). Furthermore,

:; mathfrak{a} = operatorname{span} { i sigma_2}

is a maximal abelian subalgebra of mathfrak{p}. Now, a version of Cartan decomposition states that any element "U" in the Lie group SU(2) can be expressed in the form

:U = e^{k_1} e^a e^{k_2},! where k_1, k_2 in mathfrak{k} and a in mathfrak{a}.

In other words, any unitary "U" of determinant 1 is of the form

:U = e^{i alpha sigma_1} e^{i eta sigma_2} e^{i gamma sigma_3},!

for some real numbers α, β, and γ.

Extending to unitary matrices gives that any unitary 2 × 2 "U" is of the form

:U = e^{i delta} e^{i alpha sigma_1} e^{i eta sigma_2} e^{i gamma sigma_3},!

where the additional parameter δ is also real.

SO(3)

The Lie algebra su(2) is isomorphic to the Lie algebra so(3), which corresponds to the Lie group SO(3), the group of rotations in three-dimensional space. In other words, one can say that i sigma_j's are a realization (and, in fact, the lowest-dimensional realization) of "infinitesimal" rotations in three-dimensional space. However, even though su(2) and so(3) are isomorphic as Lie algebras, SU(2) and SO(3) are not isomorphic as Lie groups. SU(2) is actually a double cover of SO(3), meaning that there is a two-to-one homomorphism from SU(2) to SO(3).

Quaternions

Consider the real linear span "S" of {"I", σ1 σ2, σ2 σ3, σ"3" σ"1"}. "S" is isomorphic to the real algebra of quaternions H. The isomorphism from H to "S" is given by

:1 simeq 1, i simeq sigma_1 sigma_2, j simeq sigma_3 sigma_1, k simeq sigma_2 sigma_3.

As the quaternions of unit norm is group-isomorphic to SU(2), this gives yet another way of describing SU(2) via the Pauli matrices. The two-to-one homomorphism from SU(2) to SO(3) can also be explicitly given in terms of the Pauli matrices in this formulation.

Quaternions form a division algebra - there always is an inverse - whereas Pauli matrices do not.

Physics

Quantum mechanics

*In quantum mechanics, each Pauli matrix represents an observable describing the spin of a spin ½ particle in the three spatial directions. Also, as an immediate consequence of the Cartan decomposition mentioned above, i sigma_j are the generators of rotation acting on non-relativistic particles with spin ½. The state of the particles are represented as two-component spinors. An interesting property of spin ½ particles is that they must be rotated by an angle of 4pi in order to return to their original configuration. This is due to the two-to-one correspondence between SU(2) and SO(3) mentioned above, and the fact that, although one visualizes spin up/down as the north/south pole on the 2-sphere "S""2", they are actually represented by orthogonal vectors in the two dimensional complex Hilbert space.

*For a spin Fraction|1|2 particle, the spin operator is given by mathbf{J} =frachbar2oldsymbol{sigma}. The Pauli matrices can be generalized to describe higher spin systems in three spatial dimensions. The spin matrices for spin 1 and spin Fraction|3|2 are given below:j=1::J_x = frachbarsqrt{2}egin{pmatrix}0&1&0\1&0&1\0&1&0end{pmatrix}

:J_y = frachbarsqrt{2}egin{pmatrix}0&-i&0\i&0&-i\0&i&0end{pmatrix}

:J_z = hbaregin{pmatrix}1&0&0\0&0&0\0&0&-1end{pmatrix}

j=Fraction|3|2::J_x = frachbar2egin{pmatrix}0&sqrt{3}&0&0\sqrt{3}&0&2&0\0&2&0&sqrt{3}\0&0&sqrt{3}&0end{pmatrix}

:J_y = frachbar2egin{pmatrix}0&-isqrt{3}&0&0\isqrt{3}&0&-2i&0\0&2i&0&-isqrt{3}\0&0&isqrt{3}&0end{pmatrix}

:J_z = frachbar2egin{pmatrix}3&0&0&0\0&1&0&0\0&0&-1&0\0&0&0&-3end{pmatrix}

*Also useful in the quantum mechanics of multiparticle systems, the general Pauli group Gn is defined to consist of all n-fold tensor products of Pauli matrices.

*The fact that any 2 × 2 complex Hermitian matrices can be expressed in terms of the identity matrix and the Pauli matrices also leads to the Bloch sphere representation of 2 × 2 mixed states (2 × 2 positive semidefinite matrices with trace 1). This can be seen by simply first writing a Hermitian matrix as a real linear combination of {σ0, σ1, σ2, σ3} then impose the positive semidefinite and trace 1 assumptions.

Quantum information

*In quantum information, single-qubit quantum gates are "2" × "2" unitary matrices. The Pauli matrices are some of the most important single-qubit operations. In that context, the Cartan decomposition given above is called the "Z-Y decomposition of a single-qubit gate". Choosing a different Cartan pair gives a similar "X-Y decomposition of a single-qubit gate".

See also

* Angular momentum
* Gell-Mann matrices
* Generalizations of Pauli matrices
* Poincare group
* Pauli equation

References

*cite book | author=Liboff, Richard L. | title=Introductory Quantum Mechanics | publisher=Addison-Wesley | year=2002 | id=ISBN 0-8053-8714-5

*cite book | author=Schiff, Leonard I. | title=Quantum Mechanics | publisher=McGraw-Hill | year=1968 | id=ISBN 007-Y85643-5


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Generalizations of Pauli matrices — In mathematics and physics, in particular quantum information, the term generalized Pauli matrices refers to families of matrices which generalize the (linear algebraic) properties of the Pauli matrices. In this article we give a few classes of… …   Wikipedia

  • Pauli equation — The Pauli Equation, also known as the Schrödinger Pauli equation, is the formulation of the Schrödinger equation for spin one half particles which takes into account the interaction of the particle s spin with the electromagnetic field. It is the …   Wikipedia

  • Pauli group — The Pauli group G 1 on 1 qubit is the group consisting of I and all the Pauli matrices X=sigma 1, Y=sigma 2, Z=sigma 3, together with multiplicative factors pm1,pm i. It is the group generated by the Pauli matrices under matrix multiplication: :G …   Wikipedia

  • Pauli-Matrizen — Die Pauli Matrizen σ1,σ2,σ3 (nach Wolfgang Pauli) bilden eine Basis der hermiteschen, spurfreien 2×2 Matrizen und stellen die Wirkung der Drehimpulsoperatoren, auf Spin ½ Zuständen, beispielsweise auf Elektronen, dar. Die Pauli Matrizen lauten …   Deutsch Wikipedia

  • Pauli-Matrix — Die Pauli Matrizen σ1,σ2,σ3 (nach Wolfgang Pauli) bilden eine Basis der hermiteschen, spurfreien 2×2–Matrizen und stellen die Wirkung der Drehimpulsoperatoren, auf Spin 1/2 Zuständen, beispielsweise auf Elektronen, dar. Die Pauli Matrizen lauten …   Deutsch Wikipedia

  • Pauli-Spinmatrizen — Die Pauli Matrizen σ1,σ2,σ3 (nach Wolfgang Pauli) bilden eine Basis der hermiteschen, spurfreien 2×2–Matrizen und stellen die Wirkung der Drehimpulsoperatoren, auf Spin 1/2 Zuständen, beispielsweise auf Elektronen, dar. Die Pauli Matrizen lauten …   Deutsch Wikipedia

  • Matrices De Pauli — Les matrices de Pauli, développées par Wolfgang Pauli, forment une base du groupe SU(2). Elles sont définies comme l ensemble des matrices complexes de dimensions 2 × 2 suivantes  …   Wikipédia en Français

  • Matrices de pauli — Les matrices de Pauli, développées par Wolfgang Pauli, forment une base du groupe SU(2). Elles sont définies comme l ensemble des matrices complexes de dimensions 2 × 2 suivantes  …   Wikipédia en Français

  • PAULI (W.) — Enfant prodige, «le fouet de Dieu», «la conscience» de la physique théorique de son temps, le fils spirituel d’Einstein, Wolfgang Pauli, l’un des jeunes génies révolutionnaires de la physique quantique, au cours d’une réflexion rétrospective sera …   Encyclopédie Universelle

  • Matrices de Pauli — Les matrices de Pauli, développées par Wolfgang Pauli, forment une base de l algèbre de Lie du groupe SU(2). Elles sont définies comme l ensemble des matrices complexes de dimensions 2 × 2 suivantes  …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”