Atom laser

Atom laser

An atom laser is a coherent state of propagating atoms. They are created out of a Bose–Einstein condensate of atoms that are output coupled using various techniques. Much like an optical laser, an atom laser is a coherent beam that behaves like a wave. There has been some argument that the term "atom laser" is misleading. Indeed, "laser" stands for "Light Amplification by Stimulated Emission of Radiation" which is not particularly related to the physical object called an atom laser, and if at all describes more accurately the Bose–Einstein condensate (BEC). The terminology most widely used in the community today is to distinguish between the BEC, typically obtained by evaporation in a conservative trap, from the atom laser itself, which is a propagating atomic wave obtained by extraction from a previously realized BEC. Some ongoing experimental research tries to obtain directly an atom laser from a "hot" beam of atoms without making a trapped BEC first.

Contents

Introduction

The first pulsed atom laser was demonstrated at MIT by Professor Wolfgang Ketterle et al. in November 1996.[1] Ketterle used an isotope of sodium and used an oscillating magnetic field as their output coupling technique, letting gravity pull off partial pieces looking much like a dripping tap (See movie in External Links).

From the creation of the first atom laser there has been a surge in the recreation of atom lasers along with different techniques for output coupling and in general research. The current developmental stage of the atom laser is analogous to that of the optical laser during its discovery in the 1960s. To that effect the equipment and techniques are in their earliest developmental phases and still strictly in the domain of research laboratories.

Physics

The physics of an atom laser is similar to that of an optical laser. The main differences between an optical and an atom laser are that atoms interact with themselves, cannot be created as photons can, and possess mass whereas photons do not (they therefore propagate at a speed below that of light).[2] The van der Waals interaction of atoms with surfaces makes it difficult to make the atomic mirrors, typical for conventional lasers.

A continuously operating atom laser was demonstrated for the first time by researchers at the Max Planck Institute for Quantum Optics in Munich[3]. Its predecessor produced pulses of atoms, rather than continuous beams. In addition, the atoms emitted from the pulsed atom laser quickly spread out in a moon-like crescent, instead of forming a more desirable narrow beam.

Applications

Atom lasers are critical for atom holography. Similar to conventional holography atom holography uses the diffraction of atoms. The De Broglie wavelength of the atoms is much smaller than the wavelength of light, so atom laser can create much higher resolution holographic images. Atom holography might be used to project complex integrated-circuit patterns, just a few nanometres in scale, onto semiconductors. Another application, which might also benefit from atom lasers, is atom interferometry. In an atom interferometer an atomic wave packet is coherently split into two wave packets that follow different paths before recombining. Atom interferometers, which can be more sensitive than optical interferometers, could be used to test quantum theory, and have such high precision that they may even be able to detect changes in space-time.[4] This is because the de Broglie wavelength of the atoms is much smaller than the wavelength of light, the atoms have mass, and because the internal structure of the atom can also be exploited.

See also

Bose-Einstein condensate

References

  1. ^ MIT (1997) "MIT physicists create first atom laser", http://web.mit.edu/newsoffice/1997/atom-0129.html accessed Jul. 31, 2006.
  2. ^ MIT's Center for Ultracold Atoms "The Atom Laser", http://cua.mit.edu/ketterle_group/Projects_1997/atomlaser_97/atomlaser_comm.html accessed Jul. 31, 2006.
  3. ^ Bloch, Immanuel; Hänsch, Theodor; Esslinger, Tilman (1999). "Atom Laser with a cw Output Coupler". Physical Review Letters 82 (15): 3008. arXiv:cond-mat/9812258. Bibcode 1999PhRvL..82.3008B. doi:10.1103/PhysRevLett.82.3008. 
  4. ^ Stanford (2003) The Second Orion Workshop "Hyper precision cold atom interferometry in space", http://www-conf.slac.stanford.edu/orion/PAPERS/D02.PDF

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • neutral atom laser — neutraliųjų atomų lazeris statusas T sritis radioelektronika atitikmenys: angl. neutral atom laser vok. Neutralatomenlaser, m rus. лазер на нейтральных атомах, m pranc. laser à atomes neutres, m …   Radioelektronikos terminų žodynas

  • Laser — For other uses, see Laser (disambiguation). United States Air Force laser experiment …   Wikipedia

  • Laser (disambiguation) — A laser is a device which generates a coherent beam of light.Laser can also refer to: *Laser (dinghy), the popular International Laser Class sailing dinghy *Silphium, an extinct plant of genus Ferula , which produced a resin (also called laser )… …   Wikipedia

  • laser à atomes neutres — neutraliųjų atomų lazeris statusas T sritis radioelektronika atitikmenys: angl. neutral atom laser vok. Neutralatomenlaser, m rus. лазер на нейтральных атомах, m pranc. laser à atomes neutres, m …   Radioelektronikos terminų žodynas

  • Laser cooling — refers to the number of techniques in which atomic and molecular samples are cooled through the interaction with one or more laser light fields. The first example of laser cooling, and also still the most common method of laser cooling (so much… …   Wikipedia

  • Laser: Laserstrahlung und Aufbau eines Lasers —   Auch wenn der Laser mittlerweile ein vielen Menschen vertrauter Begriff ist, sind doch wenigen die physikalischen Grundlagen seiner Funktion bekannt. Begriffe wie »Besetzungsinversion« oder »stimulierte Emission« werden bisweilen gebraucht,… …   Universal-Lexikon

  • Laser: Die Grundlagen —   Anders als natürliche und konventionelle Lichtquellen (z. B. Sonne, Glühlampe) ist Laserlicht sehr intensiv, einfarbig und scharf gebündelt. Jede einzelne dieser Eigenschaften zeichnet den Laser aus und erschließt ihm dadurch neue… …   Universal-Lexikon

  • Atom — [a to:m], das; s, e: kleinstes, mit chemischen Mitteln nicht weiter zerlegbares Teilchen eines chemischen Grundstoffes: Atome sind elektrisch neutral. Zus.: Wasserstoffatom. * * * Atom 〈n. 11; Chem.〉 1. kleinstes, mit chem. Mitteln nicht mehr… …   Universal-Lexikon

  • Atom optics — (or atomic optics) is the area of physics which deals with beams of cold, slowly moving neutral atoms, as a special case of a particle beam. Like an optical beam, the atomic beam may exhibit diffraction and interference, and can be focused with… …   Wikipedia

  • Atom (Comics) — Pour les articles homonymes, voir Atom (homonymie). Atom Personnage de Atom …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”