# Rayleigh quotient

﻿
Rayleigh quotient

In mathematics, for a given complex Hermitian matrix $A$ and nonzero vector $x$, the Rayleigh quotient $R\left(A, x\right)$ is defined as:

:$\left\{x^\left\{*\right\} A x over x^\left\{*\right\} x\right\}$

For real matrices and vectors, the condition of being Hermitian reduces to that of being symmetric, and the conjugate transpose $x^\left\{*\right\}$ to the usual transpose $x\text{'}$. Note that $R\left(A, c . x\right) = R\left(A,x\right)$ for any real scalar $c$. Recall that a Hermitian (or real symmetric) matrix has real eigenvalues. It can be shown that the Rayleigh quotient reaches its minimum value $lambda_\left\{operatorname\left\{min$ (the smallest eigenvalue of $A$) when $x$ is $v_\left\{operatorname\left\{min$ (the corresponding eigenvector). Similarly, $R\left(A, x\right) leq lambda_\left\{operatorname\left\{max$ and $R\left(A, v_\left\{operatorname\left\{max\right) = lambda_\left\{operatorname\left\{max$. The Rayleigh quotient is used in Min-max theorem to get exact values of all eigenvalues. It is also used in eigenvalue algorithms to obtain an eigenvalue approximation from an eigenvector approximation. Specifically, this is the basis for Rayleigh quotient iteration.

pecial case of covariance matrices

A covariance matrix $Sigma$ can be represented as the product $A\text{'} A$. Its eigenvalues are positive:

:$Sigma v_i = lambda _i v_i$

:$A\text{'} A v_i = lambda _i v_i$

:$v_i\text{'} A\text{'} A v_i = v_i\text{'} lambda _i v_i$

:$left| A v_i ight|^2 = lambda _i left| v_i ight|^2$

:$lambda _i = frac\left\{left| A v_i ight|^2\right\}\left\{left| v_i ight|^2\right\} geq 0$

The eigenvectors are orthogonal to one another:

:$A\text{'} A v_i = lambda _i v_i$

:$v _j\text{'} A\text{'} A v_i = lambda _i v_j\text{'} v_i$

:$\left(A\text{'} A v_j \right)\text{'} v_i = lambda _i v_j\text{'} v_i$

:$lambda _j v_j \text{'} v_i = lambda _i v_j\text{'} v_i$

:$\left(lambda _j - lambda _i\right) v_j \text{'} v_i = 0$

:$v_j \text{'} v_i = 0$ (different eigenvalues, in case of multiplicity, the basis can be orthogonalized)

The Rayleigh quotient can be expressed as a function of the eigenvalues by decomposing any vector $x$ on the basis of eigenvectors::$x = sum _\left\{i=1\right\} ^n alpha _i v_i$

:$ho = frac\left\{x\text{'} A\text{'} A x\right\}\left\{x\text{'} x\right\}$

:$ho = frac\left\{\left(sum _\left\{j=1\right\} ^n alpha _j v_j\right)\text{'} A\text{'} A \left(sum _\left\{i=1\right\} ^n alpha _i v_i\right)\right\}\left\{\left(sum _\left\{j=1\right\} ^n alpha _j v_j\right)\text{'} \left(sum _\left\{i=1\right\} ^n alpha _i v_i\right)\right\}$

Which, by orthogonality of the eigenvectors, becomes:

:$ho = frac\left\{sum _\left\{i=1\right\} ^n alpha _i ^2 lambda _i\right\}\left\{sum _\left\{i=1\right\} ^n alpha _i ^2\right\}$

If a vector $x$ maximizes $ho$, then any vector $k . x$ (for $k e 0$) also maximizes it, one can reduce to the Lagrange problem of maximizing $sum _\left\{i=1\right\} ^n alpha _i ^2 lambda _i$ under the constraint that $sum _\left\{i=1\right\} ^n alpha _i ^2 = 1$.

Since all the eigenvalues are non-negative, the problem is convex and the maximum occurs on the edges of the domain, namely when $alpha _1 = 1$ and $forall i > 1, alpha _i = 0$ (when the eigenvalues are ordered in decreasing magnitude).

Alternatively, this result can be arrived at by the method of Lagrange multipliers. The problem is to find the critical points of the function

:$ho\left(x\right) = x^TSigma x$, subject to the constraint $|x|^2 = x^Tx = 1$.I.e. to find the critical points of :$mathcal\left\{L\right\}\left(x\right) = x^TSigma x -lambda \left(x^Tx - 1\right)$, where $lambda$ is a Lagrange multiplier. The stationary points of $mathcal\left\{L\right\}\left(x\right)$ occur at

:$frac\left\{dmathcal\left\{L\right\}\left(x\right)\right\}\left\{dx\right\} = 0$:$herefore 2x^TSigma - 2lambda x^T = 0$:$herefore Sigma x = lambda x$and $ho\left(x\right) = frac\left\{x^T Sigma x\right\}\left\{x^T x\right\} = lambda frac\left\{x^Tx\right\}\left\{x^T x\right\} = lambda$

Therefore, the eigenvectors $x_1 ldots x_n$ of $Sigma$ are the critical points of the Raleigh Quotient and their corresponding eigenvalues $lambda_1 ldots lambda_n$ are the stationary values of $ho\left(x\right)$.

This property is the basis for principal components analysis and canonical correlation.

Use in Sturm-Liouville theory

Sturm-Liouville theory concerns the action of the linear operator:$L\left(y\right) = frac\left\{1\right\}\left\{w\left(x\right)\right\}left\left(-frac\left\{d\right\}\left\{dx\right\}left \left[p\left(x\right)frac\left\{dy\right\}\left\{dx\right\} ight\right] + q\left(x\right)y ight\right)$on the inner product space defined by:$langle\left\{y_1,y_2\right\} angle = int_a^b\left\{w\left(x\right)y_1\left(x\right)y_2\left(x\right)\right\}dx$of functions satisfying some specified boundary conditions at "a" and "b". In this case the Rayleigh quotient is:$frac\left\{langle\left\{y,Ly\right\} angle\right\}\left\{langle\left\{y,y\right\} angle\right\} = frac\left\{int_a^b\left\{y\left(x\right)left\left(-frac\left\{d\right\}\left\{dx\right\}left \left[p\left(x\right)frac\left\{dy\right\}\left\{dx\right\} ight\right] + q\left(x\right)y\left(x\right) ight\right)\right\}dx\right\}\left\{int_a^b\left\{w\left(x\right)y\left(x\right)^2\right\}dx\right\}$This is sometimes presented in an equivalent form, obtained by separating the integral in the numerator and using integration by parts::$frac\left\{langle\left\{y,Ly\right\} angle\right\}\left\{langle\left\{y,y\right\} angle\right\} = frac\left\{int_a^b\left\{y\left(x\right)left\left(-frac\left\{d\right\}\left\{dx\right\}left \left[p\left(x\right)y\text{'}\left(x\right) ight\right] ight\right)\right\}dx + int_a^b\left\{q\left(x\right)y\left(x\right)^2\right\}dx\right\}\left\{int_a^b\left\{w\left(x\right)y\left(x\right)^2\right\}dx\right\}$:$= frac\left\{-y\left(x\right)left \left[p\left(x\right)y\text{'}\left(x\right) ight\right] |_a^b + int_a^b\left\{y\text{'}\left(x\right)left \left[p\left(x\right)y\text{'}\left(x\right) ight\right] \right\}dx + int_a^b\left\{q\left(x\right)y\left(x\right)^2\right\}dx\right\}\left\{int_a^b\left\{w\left(x\right)y\left(x\right)^2\right\}dx\right\}$:$= frac\left\{-p\left(x\right)y\left(x\right)y\text{'}\left(x\right)|_a^b + int_a^bleft \left[p\left(x\right)y\text{'}\left(x\right)^2 + q\left(x\right)y\left(x\right)^2 ight\right] dx\right\}\left\{int_a^b\left\{w\left(x\right)y\left(x\right)^2\right\}dx\right\}$

ee also

* Field of values

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Rayleigh-Quotient — Der Rayleigh Quotient eines Vektors x zur quadratischen Matrix A ist die Zahl mit . Hierbei bezeichnet das hermitesch Transponierte von x. Der Rayleigh Quotient hat eine enge Beziehung zu den Eigenwerten von A. Ist x …   Deutsch Wikipedia

• Rayleigh quotient iteration — is an eigenvalue algorithm which extends the idea of the inverse iteration by using the Rayleigh quotient to obtain increasingly accurate eigenvalue estimates.Rayleigh quotient iteration is an iterative method, that is, it must be repeated until… …   Wikipedia

• Rayleigh — may refer to:*Rayleigh (unit), named after the son of Lord Rayleigh *Rayleigh criterion in Angular resolution *Rayleigh distribution *Rayleigh fading *Rayleigh law on low field magnetization *Rayleigh length *Rayleigh number *Rayleigh quotient… …   Wikipedia

• Rayleigh — bezeichnet einen Ort in der englischen Grafschaft Essex, siehe Rayleigh (Essex) den Adelstitel Baron Rayleigh, darunter John William Strutt, 3. Baron Rayleigh, britischer Physiker und Nobelpreisträger, Entdecker der Duplex Theorie Siehe auch:… …   Deutsch Wikipedia

• Quotient de Rayleigh — Le quotient de Rayleigh est un nombre réel caractérisant l effet d une matrice symétrique (respectivement hermitienne) sur un vecteur, et offrant les deux propriétés fondamentales suivantes : le quotient de Rayleigh atteint un extremum… …   Wikipédia en Français

• Rayleigh-Koeffizient — Der Rayleigh Quotient des n Vektors x zur quadratischen Matrix A ist die Zahl mit . Der Rayleigh Quotient hat eine enge Beziehung zu den Eigenwerten von A. Ist x ein Eigenvektor der Matrix A und λ der zugehörige Eigenwert, dann gilt …   Deutsch Wikipedia

• Rayleigh — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. John William Strutt Rayleigh est un physicien anglais qui a donné son nom : au Rayleigh : une unité de mesure d intensité lumineuse, à la… …   Wikipédia en Français

• John William Strutt, 3. Lord Rayleigh — John William Strutt, 3. Baron Rayleigh, (* 12. November 1842 in Langford Grove, Meldon, England; † 30. Juni 1919 in Terlins Place bei Witham, England) war ein englischer Physiker. Er erhielt 1904 den Nobelpreis für Physik. John William Strutt, 3 …   Deutsch Wikipedia

• John William Strutt Rayleigh — John William Strutt, 3. Baron Rayleigh, (* 12. November 1842 in Langford Grove, Meldon, England; † 30. Juni 1919 in Terlins Place bei Witham, England) war ein englischer Physiker. Er erhielt 1904 den Nobelpreis für Physik. John William Strutt, 3 …   Deutsch Wikipedia

• Lord Rayleigh — John William Strutt, 3. Baron Rayleigh, (* 12. November 1842 in Langford Grove, Meldon, England; † 30. Juni 1919 in Terlins Place bei Witham, England) war ein englischer Physiker. Er erhielt 1904 den Nobelpreis für Physik. John William Strutt, 3 …   Deutsch Wikipedia