Lebesgue-Stieltjes integration

Lebesgue-Stieltjes integration

In measure-theoretic analysis and related branches of mathematics, Lebesgue-Stieltjes integration generalizes Riemann-Stieltjes and Lebesgue integration, preserving the many advantages of the latter in a more general measure-theoretic framework.

Lebesgue-Stieltjes integrals, named for Henri Leon Lebesgue and Thomas Joannes Stieltjes, are also known as Lebesgue-Radon integrals or just Radon integrals, after Johann Radon, to whom much of the theory of the present topic is due. They find common application in probability and stochastic processes, and in certain branches of analysis including potential theory.

Definition

The Lebesgue-Stieltjes integral int_a^b f(x),dg(x) is defined whenf: [a,b] oR is Borel-measurableand boundedand g: [a,b] o R is of bounded variation in [a,b] orwhen f is non-negative and g is monotone.To start, we assume that f is non-negative andg is monotone non-decreasing. In that case, for an interval Isubset [a,b] ,define w(I):=sup_{xin I}g(x)-inf_{xin I}g(x) (this is just g(t)-g(s) if I= [s,t] , but we allow I to be not necessarily closed).By Carathéodory's extension theorem, there is a unique Borel measure mu_g on [a,b] which agrees with w on every interval I.This measure is sometimes called [Halmos (1974), Sec. 15] the Lebesgue-Stieltjes measure associated with g.Then int_a^b f(x),dg(x) is defined as the Lebesgue integral of f with respect to the measure mu_g.If g is non-increasing, then int_a^b f(x),dg(x) is defined as-int_a^b f(x) ,d (-g)(x).

If g is of bounded variation and f is bounded, then we may writeg(x)=g_1(x)-g_2(x),where g_1(x):=V_a^xg is the total variationof g in the interval [a,x] , and g_2(x)=g_1(x)-g(x).It can easily be shown that g_1 and g_2 are both monotone non-decreasing.Now the Lebesgue-Stieltjes integral int_a^b f(x),dg(x) is defined asint_a^b f(x),dg_1(x)-int_a^b f(x),dg_2(x), where the latter two integralsare well defined since g_1 and g_2 are non-decreasing.

Example

Suppose that gamma: [a,b] oR^2 is a rectifiable curve in the planeand ho:R^2 o [0,infty) is Borel measurable. Then we may define the lengthof gamma with respect to the Euclidean metric weighted by ho tobe int_a^b ho(gamma(t)),dell(t), where ell(t) is the lengthof the restriction of gamma to [a,t] .This is sometimes called the ho-length of gamma.This notion is quite useful forvarious applications: for example, in muddy terrain the speed in which a person can move maydepend on how deep the mud is. If ho(z) denotes the inverse of the walking speedat or near z, then the ho-length of gamma is thetime it would take to traverse gamma. The concept of extremal length usesthis notion of the ho-length of curves and is useful in the study of
conformal mappings.

Integration by parts

A function f is said to be "regular" at a point a if the right and left hand limits f(a+) and f(a-) exist, and the function takes the average value,:f(a)=frac{1}{2}left(f(a-)+f(a+) ight),at the limiting point. Given two functions U and V, if at each point either U or V is continuous, or if both U and V are regular, then there is an integration by parts formula for the Lebesgue-Stieltjes integral::int_a^b U,dV+int_a^b V,dU=U(b+)V(b+)-U(a-)V(a-),where b>a. Under a slight generalization of this formula, the extra conditions on U and V can be dropped. [cite journal |last=Hewitt |first=Edwin |year=1960 |month=5 |title=Integration by Parts for Stieltjes Integrals |journal=The American Mathematical Monthly |volume=67 |issue=5 |pages=419–423 |url=http://www.jstor.org/pss/2309287 |accessdate= 2008-04-23 |doi=10.2307/2309287 ]

Related concepts

Lebesgue integration

When μ"v" is the Lebesgue measure, then the Lebesgue-Stieltjes integral of "f" is equivalent to the Lebesgue integral of "f".

Riemann-Stieltjes integration and probability theory

Where "f" is a continuous real-valued function of a real variable and "v" is a non-decreasing real function, the Lebesgue-Stieltjes integral is equivalent to the Riemann-Stieltjes integral, in which case we often write:int_a^b f(x) , dv(x)for the Lebesgue-Stieltjes integral, letting the measure μ"v" remain implicit. This is particularly common in probability theory when "v" is the cumulative distribution function of a real-valued random variable, in which case :int_{-infty}^infty f(x) , dv(x) = mathrm{E} [f(X)] .(See the article on Riemann-Stieltjes integration for more detail on dealing with such cases.)

Notes

References

*
* Shilov, G. E., and Gurevich, B. L., 1978. "Integral, Measure, and Derivative: A Unified Approach", Richard A. Silverman, trans. Dover Publications. ISBN 0-486-63519-8.

External links

* Saks, Stanislaw (1937) " [http://matwbn.icm.edu.pl/kstresc.php?tom=7&wyd=10 Theory of the Integral.] "
* [http://www.probability.net/ www.probability.net Probability and foundations tutorial.]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Lebesgue integration — In mathematics, the integral of a non negative function can be regarded in the simplest case as the area between the graph of that function and the x axis. Lebesgue integration is a mathematical construction that extends the integral to a larger… …   Wikipedia

  • Intégration (mathématiques) — Pour les articles homonymes, voir intégration. interprétée comme l’aire sous la courbe de f …   Wikipédia en Français

  • Integration by parts — Topics in Calculus Fundamental theorem Limits of functions Continuity Mean value theorem Differential calculus  Derivative Change of variables Implicit differentiation Taylor s theorem Related rates …   Wikipedia

  • INTÉGRATION ET MESURE — La théorie de l’intégration joue en mathématique un rôle extrêmement important. C’est une théorie riche et complexe. Il ne sera pas question ici d’en donner une description exhaustive ni d’en aborder les assez redoutables aspects techniques. On… …   Encyclopédie Universelle

  • Lebesgue-integrierbar — Das Lebesgue Integral (nach Henri Léon Lebesgue) ist der Integralbegriff der modernen Mathematik, der die Berechnung von Integralen in beliebigen Maßräumen ermöglicht. Im Fall der reellen Zahlen mit dem Lebesgue Maß stellt das Lebesgue Integral… …   Deutsch Wikipedia

  • Lebesgue-Integral — Illustration der Grenzwertbildung beim Riemann Integral (blau) und beim Lebesgue Integral (rot) Das Lebesgue Integral (nach Henri Léon Lebesgue) ist der Integralbegriff der modernen Mathematik, der die Berechnung von Integralen in beliebigen… …   Deutsch Wikipedia

  • Henri Lebesgue — Infobox Scientist name =Henri Lebesgue box width =26em image width =225px caption = birth date =1875 06 28 birth place =Beauvais, France death date =death date and age|1941|7|26|1875|6|28 death place =Paris, France residence = citizenship =… …   Wikipedia

  • Riemann-Stieltjes integral — In mathematics, the Riemann Stieltjes integral is a generalization of the Riemann integral, named after Bernhard Riemann and Thomas Joannes Stieltjes. DefinitionThe Riemann Stieltjes integral of a real valued function f of a real variable with… …   Wikipedia

  • Intégrale de Stieltjes — Thomas Stieltjes (1856–1894) L intégrale de Stieltjes constitue une généralisation de l intégrale ordinaire, ou intégrale de Riemann. En effet, considérons deux fonctions réelles bornées f et …   Wikipédia en Français

  • Unbestimmte Integration — Anschauliche Darstellung des Integrals als Flächeninhalt S unter einer Kurve der Funktion f im Integrationsbereich von a bis b. Die Integralrechnung ist neben der Differentialrechnung der wichtigste Zweig der mathematischen Disziplin der …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”