Neurotransmitter receptor

Neurotransmitter receptor
Figure 1. The seven transmembrane α-helix structure of a G-protein-coupled receptor.

A Neurotransmitter receptor is a membrane receptor protein[1] that is activated by a Neurotransmitter.[2] A membrane protein interacts with the lipid bilayer that encloses the cell and a membrane receptor protein interacts with a chemical in the cells external environment, which binds to the cell.[1] Membrane receptor proteins, in neuronal and glial cells, allow cells to communicate with one another through chemical signals.

In postsynaptic cells, neurotransmitter receptors receive signals that trigger an electrical signal, by regulating the activity of ion channels. The binding of neurotransmitters to specific receptors can the membrane potential of a neuron. This can result in a signal that runs along the axon and can be passed along a neural network[1] (see action potential). On presynaptic cells the binding of a neurotransmitter to a specific receptor provides feedback and mediates excessive neurotransmitter release.[3]

There are two types of Neurotransmitter receptors: ligand-gated receptors or ionotropic receptors and G protein-coupled receptors or metabotropic receptors.[2][4] Ligand-gated receptors can be excited by neurotransmitters (ligands) like glutamate and aspartate. These receptors can also be inhibited by neurotransmitters like GABA and glycine. Conversely, G protein-coupled receptors are neither excitatory nor inhibitory. Rather, they modulate the actions of excititory and inhibitory neurotransmitters.[2] Most neurotransmitters receptors are G-protein coupled.[1]

Contents

Ionotropic receptors: Neurotransmitter-Gated Ion Channels

Ligand-gated ion channel

Ligand-gated ion channels (LGICs) are one type of ionotropic receptor or channel-linked receptor. They are a group of transmembrane ion channels that are opened or closed in response to the binding of a chemical messenger (i.e., a ligand),[5] such as a neurotransmitter.[6]

The binding site of endogenous ligands on LGICs protein complexes are normally located on a different portion of the protein (an allosteric binding site) compared to where the ion conduction pore is located. The direct link between ligand binding and opening or closing of the ion channel, which is characteristic of ligand-gated ion channels, is contrasted with the indirect function of metabotropic receptors, which use second messengers. LGICs are also different from voltage-gated ion channels (which open and close depending on membrane potential), and stretch-activated ion channels (which open and close depending on mechanical deformation of the cell membrane).[6][7]

Metabotropic Receptors: G-Protein Coupled Receptors

G protein-coupled receptors (GPCRs), also known as seven-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptor, and G protein-linked receptors (GPLR), comprise a large protein family of transmembrane receptors that sense molecules outside the cell and activate inside signal transduction pathways and, ultimately, cellular responses. G protein-coupled receptors are found only in eukaryotes, including yeast, choanoflagellates,[8] and animals. The ligands that bind and activate these receptors include light-sensitive compounds, odors, pheromones, hormones, and neurotransmitters, and vary in size from small molecules to peptides to large proteins. G protein-coupled receptors are involved in many diseases, and are also the target of approximately 30% of all modern medicinal drugs.[9][10]

There are two principal signal transduction pathways involving the G protein-coupled receptors: the cAMP signal pathway and the Phosphatidylinositol signal pathway.[11] When a ligand binds to the GPCR it causes a conformational change in the GPCR, which allows it to act as a guanine nucleotide exchange factor (GEF). The GPCR can then activate an associated G-protein by exchanging its bound GDP for a GTP. The G-protein's α subunit, together with the bound GTP, can then dissociate from the β and γ subunits to further affect intracellular signaling proteins or target functional proteins directly depending on the α subunit type (Gαs, Gαi/o, Gαq/11, Gα12/13).[12]:1160

Desensitization and Neurotransmitter Concentration

Neurotransmitter receptors are subject to ligand-induced desensitization: That is, they can become unresponsive upon prolonged exposure to their neurotransmitter. Neurotransmitter receptors are present on both postsynaptic neurons and presynaptic neurons with the former being used to receive neurotransmitters and the latter for the purpose of preventing further release of a given neurotransmitter [1]. In addition to being found in neuron cells, neurotransmitter receptors are also found in various immune and muscle tissues [2]. Many neurotransmitter receptors are categorized as a serpentine receptor or G protein-coupled receptor because they span the cell membrane not once, but seven times. Neurotransmitter receptors are known to become unresponsive to the type of neurotransmitter they receive when exposed for extended periods of time. This phenomenon is known as ligand-induced desensitization [3] or downregulation.

Table of neurotransmitters

Neurotransmitters

 

Transmitter Molecule

Derived From

Site of Synthesis

Acetylcholine [4]

Choline

CNS, parasympathetic nerves

Serotonin [5]
5-Hydroxytryptamine (5-HT)

Tryptophan

CNS, chromaffin cells of the gut, enteric cells

GABA [6]

Glutamate

CNS

Glutamate

 

CNS

Aspartate

 

CNS

Glycine

 

spinal cord

Histamine

Histidine

hypothalamus

Epinephrine [7]

synthesis pathway [8]

Tyrosine

adrenal medulla, some CNS cells

Norpinephrine [9]

synthesis pathway [10]

Tyrosine

CNS, sympathetic nerves

Dopamine [11]

synthesis pathway [12]

Tyrosine

CNS

Adenosine

ATP

CNS, periperal nerves

ATP

 

sympathetic, sensory and enteric nerves

Nitric oxide, NO [13]

Arginine

CNS, gastrointestinal tract

Example neurotransmitter receptors[13]

 α1A, α1b, α1c, α1d
 α2a, α2b, α2c, α2d
 β1, β2, β3
 D1, D2, D3, D4, D5
 GABAA, GABAB1a, GABAB1δ, GABAB2, GABAC
 NMDA, AMPA kainate, mGluR1, mGluR2, mGluR3, mGluR4, mGluR5, mGluR6, mGluR7
 H1, H2, H3
 Muscarinic: M1, M2, M3, M4, M5
 Nicotinic: muscle, neuronal (α-bungarotoxin-insensitive), neuronal (α-bungarotoxin-sensitive)
 μ, δ1, δ2, κ
 5-HT1A, 5-HT1B, 5-HT1D, 5-HT1E, 5-HT1F, 5-HT2A, 5-HT2B, 5-HT2C, 5-HT3, 5-HT4, 5-HT5, 5-HT6, 5-HT7
 Glycine

See also

Notes and references

  1. ^ a b c d Levitan, Irwin B.; Leonard K. Kaczmarek (2002). The Neuron (Third pg. 285 ed.). Oxford University Press. 
  2. ^ a b c http://www.brainexplorer.org/neurological_control/neurological_neurotransmitters.shtml
  3. ^ http://www.rndsystems.com/molecule_group.aspx?g=682&r=9
  4. ^ http://web.williams.edu/imput/synapse/pages/III.html
  5. ^ "ligand-gated channel" at Dorland's Medical Dictionary
  6. ^ a b Purves, Dale, George J. Augustine, David Fitzpatrick, William C. Hall, Anthony-Samuel LaMantia, James O. McNamara, and Leonard E. White (2008). Neuroscience. 4th ed.. Sinauer Associates. pp. 156–7. ISBN 978-0-87893-697-7. 
  7. ^ Connolly CN, Wafford KA (2004). "The Cys-loop superfamily of ligand-gated ion channels: the impact of receptor structure on function". Biochem. Soc. Trans. 32 (Pt3): 529–34. doi:10.1042/BST0320529. PMID 15157178. 
  8. ^ King N, Hittinger CT, Carroll SB (2003). "Evolution of key cell signaling and adhesion protein families predates animal origins". Science 301 (5631): 361–3. doi:10.1126/science.1083853. PMID 12869759. 
  9. ^ Filmore, David (2004). "It's a GPCR world". Modern Drug Discovery (American Chemical Society) 2004 (November): 24–28. http://pubs.acs.org/subscribe/journals/mdd/v07/i11/html/1104feature_filmore.html. 
  10. ^ Overington JP, Al-Lazikani B, Hopkins AL (December 2006). "How many drug targets are there?". Nat Rev Drug Discov 5 (12): 993–6. doi:10.1038/nrd2199. PMID 17139284. 
  11. ^ Gilman A.G. (1987). "G Proteins: Transducers of Receptor-Generated Signals". Annual Review of Biochemistry 56: 615–649. doi:10.1146/annurev.bi.56.070187.003151. PMID 3113327. 
  12. ^ Wettschureck N, Offermanns S (October 2005). "Mammalian G proteins and their cell type specific functions". Physiol. Rev. 85 (4): 1159–204. doi:10.1152/physrev.00003.2005. PMID 16183910. 
  13. ^ ed. Kebabain, J. W. & Neumeyer, J. L. (1994). "RBI Handbook of Receptor Classification"

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Receptor (biochemistry) — For other uses, see Receptor (disambiguation). In biochemistry, a receptor is a molecule found on the surface of a cell, which receives specific chemical signals from neighbouring cells or the wider environment within an organism. These signals… …   Wikipedia

  • Neurotransmitter transporter — Neurotransmitter transporters are a class of membrane transport proteins that span the cellular membranes of neurons. Their primary function is to carry neurotransmitters across these membranes and to direct their further transport to specific… …   Wikipedia

  • Receptor potential — Receptor potential, a type of graded potential, is the transmembrane potential difference of a sensory receptor. A receptor potential is often produced by sensory transduction. It is generally a depolarizing event resulting from inward current… …   Wikipedia

  • Receptor — may refer to:*Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a… …   Wikipedia

  • Neurotransmitter — For an introduction to concepts and terminology used in this article, see Chemical synapse. Structure of a typical chemical synapse Postsynaptic density Voltage gated Ca++ c …   Wikipedia

  • Receptor — In cell biology, a structure on the surface of a cell (or inside a cell) that selectively receives and binds a specific substance. There are hoards of receptors. There are receptors for insulin, receptors for low density lipoproteins (LDL), etc.… …   Medical dictionary

  • Neurotransmitter —    Neurotransmitters are the chemicals involved in communication between nerve cells ( neurons ). Substances released from the end bulb of an upstream ( presynaptic ) neuron into the synaptic space in order to excite or inhibit the downstream (… …   Historical dictionary of Psychiatry

  • receptor — [rɪ sɛptə] noun Physiology 1》 an organ or cell that responds to external stimuli and transmits signals to a sensory nerve. 2》 a tissue or substance which responds to a particular neurotransmitter, hormone, etc …   English new terms dictionary

  • receptor — n. 1) a cell or group of cells specialized to detect changes in the environment and trigger impulses in the sensory nervous system. All sensory nerve endings act as receptors, whether they simply detect touch, as in the skin, or chemical… …   The new mediacal dictionary

  • Cell surface receptor — The seven transmembrane α helix structure of a G protein coupled receptor Cell surface receptors (membrane receptors, transmembrane receptors) are specialized integral membrane proteins that take part in communication between the cell and the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”