Bounded mean oscillation

Bounded mean oscillation

In harmonic analysis, a function of bounded mean oscillation, also known as a BMO function, is a real-valued function whose mean oscillation is bounded (finite). The space of functions of bounded mean oscillation (BMO), is a function space that, in some precise sense, plays the same role in the theory of Hardy spaces Hp that the space L of essentially bounded functions plays in the theory of Lp-spaces: it is also called John–Nirenberg space, after Fritz John and Louis Nirenberg who introduced and studied it for the first time.

Contents

Historical note

According to Nirenberg (1985, p. 703 and p. 707),[1] the space of functions of bounded mean oscillation was introduced by John (1961, pp. 410–411) in connection with his studies of mappings from a bounded set Ω belonging to ℝn into ℝn and the corresponding problems arising from elasticity theory, precisely from the concept of elastic strain: the basic notation was introduced in a closely following paper by John & Nirenberg (1961),[2] where several properties of this function spaces were proved. The next important step in the development of the theory was the proof by Charles Fefferman[3] of the duality between BMO and the Hardy space H1, in the noted paper Fefferman & Stein 1972: a constructive proof of this result, introducing new methods and starting a further development of the theory, was given by Akihito Uchiyama.[4]

Definition

Definition 1. The mean oscillation of a locally integrable function u (i.e. a function belonging to \scriptstyle L^1_{\textrm{loc}}(\mathbb{R}^n)) over a hypercube[5] Q in n is defined as the following integral:

 \frac{1}{|Q|}\int_{Q}|u(y)-u_Q|\,\mathrm{d}y

where

  • |Q| is the volume of Q, i.e. its Lebesgue measure
  • uQ is the average value of u on the cube Q, i.e.
u_Q=\frac{1}{|Q|}\int_{Q} u(y)\,\mathrm{d}y.

Definition 2. A BMO function is any function u belonging to \scriptstyle L^1_{\textrm{loc}}(\mathbb{R}^n) whose mean oscillation has a finite supremum over the set of all cubes Q contained in n.

Note. The use of cubes Q in n as the integration domains on which the mean oscillation is calculated, is not mandatory: Wiegerinck (2001) uses balls instead and, as remarked by Stein (1993, p. 140), in doing so a perfectly equivalent of definition of functions of bounded mean oscillation arises.

Basic properties

BMO functions are locally p–integrable

BMO functions are locally Lp if 0 < p < ∞ , but need not be locally bounded.

BMO is a Banach space

The supremum of the mean oscillation is called the BMO norm of u and is denoted by ||u||BMO (and in some instances it is also denoted ||u||*). The function ||u||BMO becomes a norm on BMO functions after quotienting out by the constant functions (which have BMO norm 0).

Averages of adjacent cubes are comparable

As the name suggests, the mean or average of a function in BMO shouldn't oscillate very much when computing it over cubes close to each other in position and scale. To be more precise, if Q and R are dyadic cubes such that their boundaries touch and the sidelength of Q is no less than one-half the sidelength of R, then

 |f_{R}-f_{Q}|\leq C||f||_{BMO}

where C>0 is some universal constant. This property is, in fact, equivalent to f being in BMO, that is, if f is a locally integrable function such that |fR-fQ|≤C for all dyadic cubes Q and R adjacent in the sense described above, then f is in BMO and its BMO norm is proportional to the constant C.

The John–Nirenberg Inequality

The John–Nirenberg Inequality is an estimate that governs how far a function of bounded mean oscillation may deviate from its average by a certain amount.

Statement

There are constants c1,c2 > 0 such that whenever f ∈ BMO(n), then for any cube Q in n,

 |\{x\in Q: |f-f_{Q}|>\lambda\}|\leq c_{1}e^{-c_{2}\frac{\lambda}{||f||_{BMO}}}|Q|.

Conversely, if this inequality holds over all cubes with some constant C in place of ||f||BMO, then f is in BMO with norm at most a constant times C.

A consequence: the distance in BMO to L

The John-Nirenberg inequality can actually give more information than just the BMO norm of a function. For a locally integrable function f, let A(f) be the infimal A>0 for which

\sup_{Q\subseteq\mathbb{R}^{n}}\frac{1}{|Q|}\int_{Q}e^{\frac{|f-f_{Q}|}{A}}\mathrm{d}x<\infty.

The John–Nirenberg inequality implies that A(f)≤C||f||BMO for some universal constant C. For an L function, however, the above inequality will hold for all A>0. In other words, A(f)=0 if f is in L. Hence the constant A(f) gives us a way of measuring how far a function in BMO is from the subspace L. This statement can be made more precise:[6] there is a constant C, depending only on the dimension n, such that for any function f ∈ BMO(ℝn) the following two-sided inequality holds

 \frac{1}{C}A(f)\leq \inf_{g\in L^{\infty}}||f-g||_{BMO}\leq CA(f).

Generalizations and extensions

The spaces BMOH and BMOA

When the dimension of the ambient space is 1, the space BMO can be seen as a subspace of harmonic functions on the unit disk and plays a major role in the theory of Hardy spaces: by using definition 2, it is possible to define the BMO(T) space on the unit circle as the space of functions \scriptstyle  f:T\rightarrow \mathbb{R} such that

 \frac{1}{|I|}\int_{I}|f(y)-f_I|\,\mathrm{d}y < +\infty

i.e. such that its mean oscillation over every arc I of the unit circle[7] is bounded. Here as before fI is the mean value of f over the arc I.

Definition 3. An Analytic function on the unit disk is said to belong to the Harmonic BMO or in the BMOH space if and only if it is the Poisson integral of a BMO(T) function. Therefore BMOH is the space of all functions u with the form:

 u(a)=\frac{1}{2\pi}\int_{\mathbb{T}}\frac{1-|a|^2}{|a-e^{i\theta}|^2}f(e^{i\theta})\,\mathrm{d}\theta

equipped with the norm:

\|u\|_{BMOH}=\sup _ {|a|<1}\left\{\frac{1}{2\pi}\int_{\mathbb{T}}\frac{1-|a|^2}{|a-e^{i\theta}|^2}|f(e^{i\theta})-u(a)|\,\mathrm{d}\theta\right\}

The subspace of analytic functions belonging BMOH is called the Analytic BMO space or the BMOA space.

BMOA as the dual space of H1(D)

Charles Fefferman in his original paper proved that the real BMO space is dual to the real valued harmonic Hardy space on the upper half-spacen×\scriptstyle(0,+\infty] . Today in the theory of Complex and Harmonic analysis the following - modern - approach for analytic functions, is more often considered. Let Hp(D) be the Analytic Hardy space on the unit Disc. For p = 1 we identify (H1)* with BMOA by pairing f ∈H1(D) and g ∈ BMOA using the anti-linear transformation Tg

T_g(f)=\lim_{r \rightarrow 1}\int_{-\pi}^{\pi}\bar{g}(e^{i\theta})f(re^{i\theta}) \, \mathrm{d}\theta

Notice that although the limit always exists for an H1 function f and Tg is an element of the dual space (H1)*, since the transformation is anti-linear, we don't have an isometric isomorphism between (H1)* and BMOA. However one can obtain an isometry if they consider a kind of space of conjugate BMOA functions.

The space VMO

The space VMO of functions of vanishing mean oscillation is the closure in BMO of the continuous functions that vanish at infinity. It can also be defined as the space of functions whose "mean oscillations" on cubes Q are not only bounded, but also tend to zero uniformly as the radius of the cube Q tends to 0 or infinity. The space VMO is a sort of Hardy space analogue of the space of continuous functions vanishing at infinity, and in particular the real valued harmonic Hardy space H1 is the dual of VMO.[8]

The Dyadic BMO space

Let Δ denote the set of dyadic cubes in n. The space dyadic BMO, written BMOd is the space of functions satisfying the same inequality as for BMO functions, only that the supremum is over all dyadic cubes. This supremum is sometimes denoted ||•||BMOd.

This space is contained in but still distinct from BMO as it depends greatly on the position of the dyadic cubes. In particular, the function log(x)χ[0,∞) is a function that is in dyadic BMO but not in BMO. However, if a function f is such that ||f(•-x)||BMOd≤C for all x in n for some C>0, then by the one-third trick f is also in BMO.

Although dyadic BMO is a much narrower class than BMO, many theorems that are true for BMO are much simpler to prove for dyadic BMO, and in some cases one can recover the original BMO theorems by proving them first in the special dyadic case.[9]

Examples

Examples of BMO functions include the following:

  • All bounded (measurable) functions. If f is in L, then ||f||BMO≤2||f||:[10] however, the converse is not true as the following example shows.
  • The function log(|P|) for any polynomial P that is not identically zero: in particular, this is true also for |P(x)|=|x|.[10]
  • If w is an A weight, then log(w) is BMO. Conversely, if f is BMO, then eδf is an A weight for δ>0 small enough: this fact is a consequence of the John-Nirenberg Inequality.[11]

Notes

  1. ^ Aside with the collected papers of Fritz John, a general reference for the theory of functions of bounded mean oscillation, with also many (short) historical notes, is the noted book by Stein (1993, chapter IV).
  2. ^ The paper (John 1961) just precedes the paper (John & Nirenberg 1961) in volume 14 of the Communications on Pure and Applied Mathematics.
  3. ^ Elias Stein credits only Fefferman for the discovery of this fact: see (Stein 1993, p. 139).
  4. ^ See his proof in the paper Uchiyama 1982.
  5. ^ When n = 3 or n = 2, Q is respectively a cube or a square, while when n = 1 the domain on integration is a bounded closed interval.
  6. ^ See the paper Garnett & Jones 1978 for the details.
  7. ^ An arc in the unit circle T can be defined as the image of a finite interval on the real line ℝ under a continuous function whose codomain is T itself: a simpler, somewhat naive definition can be found in the entry "Arc (geometry)".
  8. ^ See reference Stein 1993, p. 180.
  9. ^ See the reference paper by Garnett & Jones 1982 for a comprehensive development of these themes.
  10. ^ a b See reference Stein 1993, p. 140.
  11. ^ See reference Stein 1993, p. 197.

Bibliography

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Oscillation (mathematics) — For other uses, see Oscillation (differential equation). Oscillation of a sequence (shown in blue) is the difference between the limit superior and limit inferior of the sequence. In mathematics, oscillation is the behaviour of a sequence of real …   Wikipedia

  • BMO — Bounded Mean Oscillation (Medical) * Before Market Opens (Business » Stock Exchange) * Black Moving Object (Academic & Science » Astronomy) * Battalion Maintenance Officer (Governmental » Military) * Bhamo, Myanmar (Regional » Airport Codes) *… …   Abbreviations dictionary

  • Hardy space — In complex analysis, the Hardy spaces (or Hardy classes) Hp are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz (Riesz 1923), who named them after G. H. Hardy, because of the… …   Wikipedia

  • Louis Nirenberg — in Jerusalem, 1975 Louis Nirenberg (* 28. Februar 1925 in Hamilton, Ontario) ist ein kanadischer Mathematiker, der vor allem auf dem Gebiet der Partiellen Differentialgleichungen forscht …   Deutsch Wikipedia

  • BMO-Raum — Der BMO Raum ist ein Objekt aus der harmonischen Analysis, einem Teilgebiet der Mathematik. Die Abkürzung BMO steht für „bounded mean oscillation“. Der Funktionenraum BMO wurde 1961 von Fritz John und Louis Nirenberg eingeführt. Dieser Raum ist… …   Deutsch Wikipedia

  • List of mathematics articles (B) — NOTOC B B spline B* algebra B* search algorithm B,C,K,W system BA model Ba space Babuška Lax Milgram theorem Baby Monster group Baby step giant step Babylonian mathematics Babylonian numerals Bach tensor Bach s algorithm Bachmann–Howard ordinal… …   Wikipedia

  • Muckenhoupt weights — In mathematics, the class of Muckenhoupt weights Ap consists of those weights ω for which the Hardy–Littlewood maximal operator is bounded on Lp(dω). Specifically, we consider functions f on and their associated maximal functions M(f) defined as… …   Wikipedia

  • Sobolev inequality — In mathematics, there is in mathematical analysis a class of Sobolev inequalities, relating norms including those of Sobolev spaces. These are used to prove the Sobolev embedding theorem, giving inclusions between certain Sobolev spaces, and the… …   Wikipedia

  • List of Banach spaces — In the mathematical field of functional analysis, Banach spaces are among the most important objects of study. In other areas of mathematical analysis, most spaces which arise in practice turn out to be Banach spaces as well. Classical Banach… …   Wikipedia

  • Hilbert transform — In mathematics and in signal processing, the Hilbert transform is a linear operator which takes a function, u ( t ), and produces a function, H ( u )( t ), with the same domain. The Hilbert transform is named after David Hilbert, who first… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”