Polygamma function

Polygamma function

In mathematics, the polygamma function of order "m" is defined as the ("m" + 1)th
derivative of the logarithm of the gamma function:

:psi^{(m)}(z) = left(frac{d}{dz} ight)^m psi(z) = left(frac{d}{dz} ight)^{m+1} lnGamma(z).

Here

:psi(z) =psi^{(0)}(z) = frac{Gamma'(z)}{Gamma(z)}

is the digamma function and Gamma(z) is the gamma function. The function psi^{(1)}(z) is sometimes called the trigamma function.

Integral representation

The polygamma function may be represented as

:psi^{(m)}(z)= (-1)^{(m+1)}int_0^infty frac{t^m e^{-zt {1-e^{-t dt

which holds for Re "z" >0 and "m" > 0. For "m" = 0 see the digamma function definition.

Recurrence relation

It has the recurrence relation:psi^{(m)}(z+1)= psi^{(m)}(z) + (-1)^m; m!; z^{-(m+1)}.

Multiplication theorem

The multiplication theorem gives

:k^{m} psi^{(m-1)}(kz) = sum_{n=0}^{k-1} psi^{(m-1)}left(z+frac{n}{k} ight)

for m>1, and, for m=0, one has the digamma function:

:k (psi(kz)-log(k)) = sum_{n=0}^{k-1} psileft(z+frac{n}{k} ight).

eries representation

The polygamma function has the series representation

:psi^{(m)}(z) = (-1)^{m+1}; m!; sum_{k=0}^infty frac{1}{(z+k)^{m+1

which holds for "m" > 0 and any complex "z" not equal to a negative integer. This representation can be written more compactly in terms of the Hurwitz zeta function as

:psi^{(m)}(z) = (-1)^{m+1}; m!; zeta (m+1,z).

Alternately, the Hurwitz zeta can be understood to generalize the polygamma to arbitrary, non-integer order.

One more series may be permitted for the polygamma functions. As given by Schlömilch,

1 / Gamma(z) = z ; mbox{e}^{gamma z} ; prod_{n=1}^{infty} left(1 + frac{z}{n} ight) ; mbox{e}^{-z/n}. This is a result of the Weierstrass factorization theorem.

Thus, the gamma function may now be defined as:

Gamma(z) = frac{mbox{e}^{-gamma z{z} ; prod_{n=1}^{infty} left(1 + frac{z}{n} ight)^{-1} ; mbox{e}^{z/n}

Now, the natural logarithm of the gamma function is easily representable:

ln Gamma(z) = -gamma z - ln(z) + sum_{n=1}^{infty} frac{z}{n} - ln(1 + frac{z}{n})

Finally, we arrive at a summation representation for the polygamma function:

psi^{(n)}(z) = frac{d^{n+1{dz^{n+1ln Gamma(z) = -gamma delta_{n0} ; - ; frac{(-1)^n n!}{z^{n+1 ; + ; sum_{k=1}^{infty} frac{1}{k} delta_{n0} ; - ; frac{(-1)^n n!}{(1+frac{z}{k})^{n+1} ; k^{n+1

Where delta_{n0} is the Kronecker delta.

"(Aaron Brookner, 2008)"

Taylor series

The Taylor series at "z" = 1 is

:psi^{(m)}(z+1)= sum_{k=0}^infty (-1)^{m+k+1} (m+k)!; zeta (m+k+1); frac {z^k}{k!},

which converges for |"z"| < 1. Here, &zeta; is the Riemann zeta function. This series is easily derived from the corresponding Taylor series for the Hurwitz zeta function. This series may be used to derive a number of rational zeta series.

References

* Milton Abramowitz and Irene A. Stegun, "Handbook of Mathematical Functions", (1964) Dover Publications, New York. ISBN 978-0-486-61272-0 . See section [http://www.math.sfu.ca/~cbm/aands/page_260.htm &sect;6.4]


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Polygamma-Funktion — In der Mathematik sind die Polygamma Funktionen eine Reihe spezieller Funktionen, die als die Ableitungen der Funktion logΓ(x) definiert sind. Dabei bezeichnet Γ(x) die Gammafunktion. Die ersten beiden Polygammafunktionen werden Digammafunktion… …   Deutsch Wikipedia

  • Polygamma-Funktionen — In der Mathematik sind die Polygamma Funktionen eine Reihe spezieller Funktionen, die als die Ableitungen der Funktion logΓ(x) definiert sind. Dabei bezeichnet Γ(x) die Gammafunktion. Die ersten beiden Polygammafunktionen werden Digammafunktion… …   Deutsch Wikipedia

  • Digamma function — For Barnes s gamma function of 2 variables, see double gamma function. Digamma function ψ(s) in the complex plane. The color of a point s encodes the value of ψ(s). Strong colors denote values close to zero and hue encodes the value s argument …   Wikipedia

  • Gamma function — For the gamma function of ordinals, see Veblen function. The gamma function along part of the real axis In mathematics, the gamma function (represented by the capital Greek letter Γ) is an extension of the factorial function, with its… …   Wikipedia

  • Hurwitz zeta function — In mathematics, the Hurwitz zeta function, named after Adolf Hurwitz, is one of the many zeta functions. It is formally defined for complex arguments s with Re( s )>1 and q with Re( q )>0 by:zeta(s,q) = sum {n=0}^infty frac{1}{(q+n)^{sThis series …   Wikipedia

  • Trigamma function — In mathematics, the trigamma function, denoted psi;1(z), is the second of the polygamma functions, and is defined by: psi 1(z) = frac{d^2}{dz^2} lnGamma(z).It follows from this definition that: psi 1(z) = frac{d}{dz} psi(z)where psi;(z) is the… …   Wikipedia

  • Dirichlet beta function — This article is about the Dirichlet beta function. For other beta functions, see Beta function (disambiguation). In mathematics, the Dirichlet beta function (also known as the Catalan beta function) is a special function, closely related to the… …   Wikipedia

  • Multiple gamma function — For derivatives of the log of the gamma function, see polygamma function. In mathematics, the multiple gamma function ΓN is a generalization of the Euler Gamma function and the Barnes G function. The double gamma function was studied Barnes… …   Wikipedia

  • Multivariate gamma function — In mathematics, the multivariate Gamma function, Γp(·), is a generalization of the Gamma function. It is useful in multivariate statistics, appearing in the probability density function of the Wishart and Inverse Wishart distributions. It has two …   Wikipedia

  • Multiplication theorem — In mathematics, the multiplication theorem is a certain type of identity obeyed by many special functions related to the gamma function. For the explicit case of the gamma function, the identity is a product of values; thus the name. The various… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”