Sallen–Key filter

Sallen–Key filter

A Sallen–Key filter is a type of active filter, particularly valued for its simplicity. The circuit produces a 2-pole (12 dB/octave) lowpass or highpass response using two resistors, two capacitors and (usually) a unity-gain buffer amplifier. Higher-order filters can be obtained by cascading two or more stages. This filter topology is also known as a voltage controlled voltage source (VCVS) filter. It was introduced by R.P. Sallen and E. L. Key of MIT Lincoln Laboratory in 1955.cite journal|title=A Practical Method of Designing RC Active Filters|journal=IRE Transactions on Circuit Theory|date=1955-03|first=R. P.|last=Sallen|coauthors=E. L. Key|volume=2|issue=1|pages=74–85|id= |url=|format=|accessdate=2007-08-14]

Although the filters depicted here have a passband gain of 1 (or 0 dB), not all Sallen–Key filters have a gain of 1 in the passband. Non-unity-gain buffers can also be used (e.g., by adding additional resistors to the operational amplifier to change the feedback gain, as in a non-inverting amplifier with gain greater than 1). Sallen–Key filters are relatively resilient to component tolerance, although obtaining high Q factor may require extreme component values (or higher buffer gain).

Generic configuration

A generic unity-gain Sallen–Key filter, implemented with a unity gain operational amplifier, is shown below with an analysis that uses ideal operational amplifier theory:

If the Z_4, component was connected to ground, the filter would be a voltage divider composed of the Z_1, and Z_4, components cascaded with another voltage divider composed of the Z_2, and Z_3, components. The buffer bootstraps the "bottom" of the Z_4, component to the output of the filter, which will improve upon the simple two divider case. This interpretation is the reason why Sallen-Key filters are often drawn with the operational amplifier's non-inverting input below the inverting input, thus emphasizing the similarity between the output and ground.

By choosing different passive components (e.g., resistors and capacitors) for Z_1,, Z_2,, Z_3,, and Z_4,, the filter can be made with low-pass, bandpass, and high-pass characteristics. To derive the v_ ext{out}/v_ ext{in}, expression shown above, note that the non-inverting input (i.e., the +, input) matches the output. It is safe to make this assumption because the ideal operational amplifier has negative feedback and is connected as a unity-gain voltage follower.

To apply this analysis to the specific examples below, recall that a resistor with resistance R, has impedance Z_R, of:Z_R = R,,and a capacitor with capacitance C, has impedance Z_C, of:Z_C = frac{1}{s C},,where s = j omega = left(sqrt{-1} ight) 2 pi f, and f, is a frequency of a pure sine wave input. That is, a capacitor's impedance is frequency dependent and a resistor's impedance is not.

Low-pass configuration

An example of the unity-gain low-pass configuration is shown below:

An operational amplifier is used as the buffer here, although an emitter follower is also effective. This circuit is equivalent to the generic case above with

:Z_1 = R_1, quad Z_2 = R_2, quad Z_3 = frac{1}{s C_2}, quad ext{and} quad Z_4 = frac{1}{s C_1}.,

The transfer function for this second-order unity-gain low-pass filter is

: H(s) = frac{ 4 pi^2 F_c^2 }{ s^2 + 2 pi frac{ F_c }{Q} s + 4 pi^2 F_c^2 }

where the cutoff frequency F_c, and Q factor Q, are given by

: F_c = frac{1}{ 2 pi sqrt{R_1R_2C_1C_2} }

and

: frac{1}{Q} = frac{sqrt{R_1R_2C_1C_2{C_1} left( frac{1}{R_1} + frac{1}{R_2} ight).,

That is,

: Q = frac{ sqrt{ R_1 R_2 C_1 C_2 } }{ C_2 left( R_1 + R_2 ight) }.,

The Q, factor determines the height and width of the peak of the frequency response of the filter. As this parameter increases, the filter will tend to "ring" at a single resonant frequency near F_c, (see "LC filter" for a related discussion).

A designer must choose the Q, and F_c, appropriate for his application. For example, a second-order Butterworth filter, which has maximally flat passband frequency response, has a Q, of 1/sqrt{2},. Because there are two parameters and four unknowns, the design procedure typically fixes one resistor as a ratio of the other resistor and one capacitor as a ratio of the other capacitor. One possibility is to set the ratio between C_1, and C_2, as n, and the ratio between R_1, and R_2, as m,. So,

:R_1=mR,,

:R_2=R,,

:C_1=nC,,

:C_2=C.,

Therefore, the F_c, and Q, expressions are

: F_c = frac{1}{2pi RCsqrt{mn,,

and

: Q = frac{sqrt{mn{m+1}.

For example, the above circuit has an F_c, of 15.9, ext{kHz}, and a Q, of 0.5,. The transfer function is given by

:H(s)=frac{1}{1+C_2(R_1+R_2)s+C_1C_2R_1R_2s^2},

and, after substitution, this expression is equal to

:H(s)=frac{1}{1+RC(m+1)s+mnR^2C^2s^2}

which shows how every (R,C), combination comes with some (m,n), combination to provide the same F_c and Q for the low-pass filter. A similar design approach is used for the other filters below.

High-pass configuration

A second-order unity-gain high-pass filter with F_c, of 72, ext{Hz}, and Q, of 0.5, is shown below:

A second-order unity-gain high-pass filter has the transfer function

H(s) = frac{s^2}{s^2+2pi(frac{F_c}{Q})s+4pi^2(F_c^2)},

where cutoff frequency F_c, and Q, factor are discussed above in the low-pass filter discussion. The circuit above implements this transfer function by the equations

F_c = frac{1}{2pisqrt{R_1R_2C_1C_2

(as before), and

Q = frac{sqrt{R_1R_2C_1C_2{R_2(C_1+C_2)}.

Follow an approach similar to the one used to design the low-pass filter above.

Band-pass configuration

An example of the band-pass configuration is shown below:

An operational amplifier is used here as a buffer with gain, which affects the filter's Q. Although an emitter follower might be effective, the components would need different values to have the same Q as an emitter follower has no gain.

The peak frequency is given by:

: F_c=frac{1}{2pi}sqrt{frac{R_f+R_1}{C_1C_2R_1R_2R_f

The voltage divider in the negative feedback loop controls the gain. The "inner gain" "G" is given by

: G=1+frac{R_b}{R_a}

while the amplifier gain at the peak frequency is given by:

: A=frac{G}{3-G}

It can be seen that "G" must be kept below 3 or else the filter will oscillate. The filter is usually optimized by selecting R_2=2R_1 and C_1=C_2.

Implementation

The calculations above assume that all components used are ideal. This means, for example, that any kind of amplifier used in the implementation of the filter has infinite input impedance and zero output impedance at all frequencies of interest. It also means that all resistors and capacitors are exactly the values stated, with zero tolerance for error. And it also means that the filter is driven by a signal source that has zero impedance at all frequencies of interest. Most of these assumptions are invalid in any actual implementation of these circuits because these ideal components do not exist. Therefore, the response of an actual filter will only approximate the theoretical response indicated by these calculations. How close this approximation is depends on how close the components utilized approximate the ideal.

ee also

* Filter design

External links

* [http://focus.ti.com/lit/an/sloa024b/sloa024b.pdf Texas Instruments Application Report: Analysis of the Sallen–Key Architecture]
* [http://www.analog.com/Analog_Root/static/techSupport/designTools/interactiveTools/filter/filter.html Analog Devices filter design applet] — A simple online tool for designing active filters using voltage-feedback op-amps.
* [http://www-k.ext.ti.com/SRVS/CGI-BIN/WEBCGI.EXE/,/?St=147,E=0000000000002472277,K=2597,Sxi=1,Case=obj(26717) TI active filter design source FAQ]
* [http://focus.ti.com/lit/ml/sloa088/sloa088.pdf Op Amps for Everyone — Chapter 16]
* [http://www.postreh.com/vmichal/articles/Real_properties_of_op_amp_analysis.pdf Real properties of Sallen–Key basic block]
* [http://www.changpuak.ch/electronics/calc_08.html Online Calculation Tool for Sallen–Key Lowpass / Highpass Filters]
* [http://www.tedpavlic.com/teaching/osu/ece327/lab7_proj/lab7_proj_procedure.pdf ECE 327: Procedures for Output Filtering Lab] — Section 3 ("Smoothing Low-Pass Filter") discusses active filtering with Sallen–Key Butterworth low-pass filter.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Sallen-Key-Filter — Sallen Key Filterstruktur eines Tiefpassfilters, Mitkopplungsstruktur …   Deutsch Wikipedia

  • Sallen-Key Filter — Sallen Key Filterstruktur eines Tiefpassfilters Ein Sallen Key Filter, im Englischen auch als Sallen and Key Filter oder als Voltage Controlled Voltage Source Filter (VCVS Filter) bezeichnet, ist ein aktives elektronisches Filter, das aus einem… …   Deutsch Wikipedia

  • Filter (Elektronik) — Die Elektrotechnik bezeichnet Schaltungen als Filter, die ein elektrisches Signal abhängig von der Frequenz in der Amplitude und Phase verändern. Dadurch können unerwünschte Signalanteile abgeschwächt und unterdrückt werden. Bekannte Anwendungen… …   Deutsch Wikipedia

  • Filter (Elektrotechnik) — Die Elektrotechnik bezeichnet Schaltungen als Filter, die ein elektrisches Signal abhängig von der Frequenz in der Amplitude und Phase verändern. Dadurch können unerwünschte Signalanteile abgeschwächt und unterdrückt werden. Elektrischer… …   Deutsch Wikipedia

  • Elektronischer Filter — Die Elektrotechnik bezeichnet Schaltungen als Filter, die ein elektrisches Signal abhängig von der Frequenz in der Amplitude und Phase verändern. Dadurch können unerwünschte Signalanteile abgeschwächt und unterdrückt werden. Bekannte Anwendungen… …   Deutsch Wikipedia

  • Linear filter — A linear filter applies a linear operator to a time varying input signal. Linear filters are very common in electronics and digital signal processing (see the article on electronic filters), but they can also be found in mechanical engineering… …   Wikipedia

  • Bass-Cut-Filter — Als Hochpass bezeichnet man Filter, die nur Frequenzen oberhalb ihrer Grenzfrequenz ungeschwächt passieren lassen und tiefere Frequenzen dämpfen. Gebräuchlich sind solche Filter in der Elektronik, entsprechende Filterfunktionen können aber auch… …   Deutsch Wikipedia

  • Low cut filter — Als Hochpass bezeichnet man Filter, die nur Frequenzen oberhalb ihrer Grenzfrequenz ungeschwächt passieren lassen und tiefere Frequenzen dämpfen. Gebräuchlich sind solche Filter in der Elektronik, entsprechende Filterfunktionen können aber auch… …   Deutsch Wikipedia

  • Treble-Cut-Filter — Als Tiefpass bezeichnet man in der Elektronik Filter, die Signalanteile mit Frequenzen unterhalb ihrer Grenzfrequenz annähernd ungeschwächt passieren lassen, Anteile mit höheren Frequenzen dagegen abschwächen. Entsprechende Filterfunktionen… …   Deutsch Wikipedia

  • Butterworth-Filter — sind kontinuierliche Frequenzfilter, die so ausgelegt sind, dass der Frequenzgang unterhalb der Grenzfrequenz ωg möglichst lange horizontal verläuft. Erst kurz vor dieser Grenzfrequenz soll die Übertragungsfunktion abnehmen und in die… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”