Discrete group

Discrete group
Concepts in group theory
category of groups
subgroups, normal subgroups
group homomorphisms, kernel, image, quotient
direct product, direct sum
semidirect product, wreath product
Types of groups
simple, finite, infinite
discrete, continuous
multiplicative, additive
cyclic, abelian, dihedral
nilpotent, solvable
list of group theory topics
glossary of group theory

In mathematics, a discrete group is a group G equipped with the discrete topology. With this topology G becomes a topological group. A discrete subgroup of a topological group G is a subgroup H whose relative topology is the discrete one. For example, the integers, Z, form a discrete subgroup of the reals, R (with the standard metric topology), but the rational numbers, Q, do not.

Any group can be given the discrete topology. Since every map from a discrete space is continuous, the topological homomorphisms between discrete groups are exactly the group homomorphisms between the underlying groups. Hence, there is an isomorphism between the category of groups and the category of discrete groups. Discrete groups can therefore be identified with their underlying (non-topological) groups. With this in mind, the term discrete group theory is used to refer to the study of groups without topological structure, in contradistinction to topological or Lie group theory. It is divided, logically but also technically, into finite group theory, and infinite group theory.

There are some occasions when a topological group or Lie group is usefully endowed with the discrete topology, 'against nature'. This happens for example in the theory of the Bohr compactification, and in group cohomology theory of Lie groups.

Contents

Properties

Since topological groups are homogeneous, one need only look at a single point to determine if the topological group is discrete. In particular, a topological group is discrete if and only if the singleton containing the identity is an open set.

A discrete group is the same thing as a zero-dimensional Lie group (uncountable discrete groups are not second-countable so authors who require Lie groups to satisfy this axiom do not regard these groups as Lie groups). The identity component of a discrete group is just the trivial subgroup while the group of components is isomorphic to the group itself.

Since the only Hausdorff topology on a finite set is the discrete one, a finite Hausdorff topological group must necessarily be discrete. It follows that every finite subgroup of a Hausdorff group is discrete.

A discrete subgroup H of G is cocompact if there is a compact subset K of G such that HK = G.

Discrete normal subgroups play an important role in the theory of covering groups and locally isomorphic groups. A discrete normal subgroup of a connected group G necessarily lies in the center of G and is therefore abelian.

Other properties:

  • every discrete group is totally disconnected
  • every subgroup of a discrete group is discrete.
  • every quotient of a discrete group is discrete.
  • the product of a finite number of discrete groups is discrete.
  • a discrete group is compact if and only if it is finite.
  • every discrete group is locally compact.
  • every discrete subgroup of a Hausdorff group is closed.
  • every discrete subgroup of a compact Hausdorff group is finite.

Examples

  • Frieze groups and wallpaper groups are discrete subgroups of the isometry group of the Euclidean plane. Wallpaper groups are cocompact, but Frieze groups are not.
  • A space group is a discrete subgroup of the isometry group of Euclidean space of some dimension.
  • A crystallographic group usually means a cocompact, discrete subgroup of the isometries of some Euclidean space. Sometimes, however, a crystallographic group can be a cocompact discrete subgroup of a nilpotent or solvable Lie group.
  • Every triangle group T is a discrete subgroup of the isometry group of the sphere (when T is finite), the Euclidean plane (when T has a Z + Z subgroup of finite index), or the hyperbolic plane.
  • Fuchsian groups are, by definition, discrete subgroups of the isometry group of the hyperbolic plane.
    • A Fuchsian group that preserves orientation and acts on the upper half-plane model of the hyperbolic plane is a discrete subgroup of the Lie group PSL(2,R), the group of orientation preserving isometries of the upper half-plane model of the hyperbolic plane.
    • A Fuchsian group is sometimes considered as a special case of a Kleinian group, by embedding the hyperbolic plane isometrically into three dimensional hyperbolic space and extending the group action on the plane to the whole space.
    • The modular group is PSL(2,Z), thought of as a discrete subgroup of PSL(2,R). The modular group is a lattice in PSL(2,R), but it is not cocompact.
  • Kleinian groups are, by definition, discrete subgroups of the isometry group of hyperbolic 3-space. These include quasi-Fuchsian groups.
    • A Kleinian group that preserves orientation and acts on the upper half space model of hyperbolic 3-space is a discrete subgroup of the Lie group PSL(2,C), the group of orientation preserving isometries of the upper half-space model of hyperbolic 3-space.
  • A lattice in a Lie group is a discrete subgroup such that the Haar measure of the quotient space is finite.

See also

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Discrete — in science is the opposite of continuous: something that is separate; distinct; individual. This article is about the possible uses of the word discrete . For a definition of the word discreet , see the Wiktionary entry discreet. Discrete may… …   Wikipedia

  • Discrete space — In topology, a discrete space is a particularly simple example of a topological space or similar structure, one in which the points are isolated from each other in a certain sense. Contents 1 Definitions 2 Properties 3 Uses …   Wikipedia

  • Group algebra — This page discusses topological algebras associated to topological groups; for the purely algebraic case of discrete groups see group ring. In mathematics, the group algebra is any of various constructions to assign to a locally compact group an… …   Wikipedia

  • Group action — This article is about the mathematical concept. For the sociology term, see group action (sociology). Given an equilateral triangle, the counterclockwise rotation by 120° around the center of the triangle acts on the set of vertices of the… …   Wikipedia

  • Discrete symmetry — A discrete symmetry is a symmetry that describes non continuous changes in a system. For example, a square possesses discrete rotational symmetry, as only rotations by multiples of right angles will preserve the square s original appearance.… …   Wikipedia

  • Group ring — This page discusses the algebraic group ring of a discrete group; for the case of a topological group see group algebra, and for a general group see Group Hopf algebra. In algebra, a group ring is a free module and at the same time a ring,… …   Wikipedia

  • Discrete logarithm records — are the best results achieved to date in solving the discrete logarithm problem, which is the problem of finding solutions x to the equation gx = h given elements g and h of a finite cyclic group G. The difficulty of this problem… …   Wikipedia

  • Group theory — is a mathematical discipline, the part of abstract algebra that studies the algebraic structures known as groups. The development of group theory sprang from three main sources: number theory, theory of algebraic equations, and geometry. The… …   Wikipedia

  • Discrete series representation — In mathematics, a discrete series representation is an irreducible unitary representation of a locally compact topological group G that is a subrepresentation of the left regular representation of G on L²(G). In the Plancherel measure, such… …   Wikipedia

  • Discrete logarithm — In mathematics, specifically in abstract algebra and its applications, discrete logarithms are group theoretic analogues of ordinary logarithms. In particular, an ordinary logarithm loga(b) is a solution of the equation ax = b over the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”