Efflux (microbiology)

Efflux (microbiology)

Active efflux is a mechanism responsible for extrusion of toxic substances and antibiotics outside the cell; this is considered to be a vital part of xenobiotic metabolism. This mechanism is important in medicine as it can contribute to bacterial antibiotic resistance.

Efflux systems function via an energy-dependent mechanism (Active transport) to pump out unwanted toxic substances through specific efflux pumps. Some efflux systems are drug-specific, whereas others may accommodate multiple drugs, and thus contribute to bacterial multidrug resistance (MDR).

Contents

Efflux in bacteria

Bacterial efflux pumps

Efflux pumps are proteinaceous transporters localized in the cytoplasmic membrane of all kinds of cells. They are active transporters, meaning that they require a source of chemical energy to perform their function. Some are primary active transporters utilizing Adenosine triphosphate hydrolysis as a source of energy, whereas others are secondary active transporters (uniporters, symporters, or antiporters) in which transport is coupled to an electrochemical potential difference created by pumping out hydrogen or sodium ions outside the cell.
Bacterial efflux transporters are classified into five major superfamilies, based on the amino acid sequence and the energy source used to export their substrates:

  1. The major facilitator superfamily (MFS)
  2. The ATP-binding cassette superfamily (ABC)
  3. The small multidrug resistance family (SMR)
  4. The resistance-nodulation-cell division superfamily (RND)
  5. The Multi antimicrobial extrusion protein family (MATE).

Of these, only the ABC superfamily are primary transporters, the rest being secondary transporters utilizing proton or sodium gradient as a source of energy. Whereas MFS dominates in Gram positive bacteria, the RND family is unique to Gram-negatives.

Function

Although antibiotics are the most clinically important substrates of efflux systems, it is probable that most efflux pumps have other natural physiological functions. Examples include:

  • The E. coli AcrAB efflux system, which has a physiologic role of pumping out bile acids and fatty acids to lower their toxicity.
  • The MFS family Ptr pump in Streptomyces pristinaespiralis appears to be an autoimmunity pump for this organism when it turns on production of pristinamycins I and II.
  • The AcrAB–TolC system in E.coli is suspected to have a role in the transport of the calcium-channel components in the E. coli membrane.
  • The MtrCDE system plays a protective role by providing resistance to faecal lipids in rectal isolates of Neisseria gonorrhoeae.
  • The AcrAB efflux system of Erwinia amylovora is important for this organism's virulence, plant (host) colonization, and resistance to plant toxins.
  • The MexXY component of the MexXY-OprM multidrug efflux system of P. aeruginosa is inducible by antibiotics that target ribosomes via the PA5471 gene product.[1]

The ability of efflux systems to recognize a large number of compounds other than their natural substrates is probably because substrate recognition is based on physicochemical properties, such as hydrophobicity, aromaticity and ionizable character rather than on defined chemical properties, as in classical enzyme-substrate or ligand-receptor recognition. Because most antibiotics are amphiphilic molecules - possessing both hydrophilic and hydrophobic characters - they are easily recognized by many efflux pumps.

Impact on antimicrobial resistance

The impact of efflux mechanisms on antimicrobial resistance is large; this is usually attributed to the following:

  • The genetic elements encoding efflux pumps may be encoded on chromosomes and/or plasmids, thus contributing to both intrinsic (natural) and acquired resistance respectively. As an intrinsic mechanism of resistance, efflux pump genes can survive a hostile environment ( for example in the presence of antibiotics) which allows for the selection of mutants that over-express these genes. Being located on transportable genetic elements as plasmids or transposons is also advantageous for the microorganisms as it allows for the easy spread of efflux genes between distant species.
  • Antibiotics can act as inducers and regulators of the expression of some efflux pumps.[1]
  • Expression of several efflux pumps in a given bacterial species may lead to a broad spectrum of resistance when considering the shared substrates of some multi-drug efflux pumps, where one efflux pump may confer resistance to a wide range of antimicrobials.

Efflux in eukaryotes

In eukaryotic cells, the existence of efflux pumps has been known since the discovery of p-glycoprotein in 1976 by Juliano and Ling. Efflux pumps are one of the major causes of anticancer drug resistance in eukaryotic cells. These include monocarboxylate transporters (MCTs), multiple drug resistance proteins (MDRs)- also referred as p-glycoprotein, multidrug resistance-associated proteins (MRPs), peptide transporters (PEPTs), and Na+ phosphate transporters (NPTs). These transporters are distributed along particular portions of the renal proximal tubule, intestine, liver, blood-brain barrier, and other portions of the brain.

Efflux inhibitors

Several trials are currently being conducted to develop drugs that can be co-administered with antibiotics to act as inhibitors for the efflux-mediated extrusion of antibiotics. None of the efflux inhibitors tested is yet in clinical use. However, some of them are used to determine the efflux prevalence in clinical isolates. Its shown that Verapamil can inhibit P-glycoprotein mediated efflux which can increase oral absorption of some compounds. Some chemicals found in plants have potential as reflex pump inhibitors. Chemicals such as Capsanthin and capsorubin, carotenoids isolated from paprika; the flavonoids, rotenone, chrysin, phloretin and sakuranetin.[2]

See also

References

  1. ^ a b Morita Y, Sobel ML, Poole K (March 2006). "Antibiotic inducibility of the MexXY multidrug efflux system of Pseudomonas aeruginosa: involvement of the antibiotic-inducible PA5471 gene product.". Antimicrob. Agents Chemother. 188 (5): 1847–55. PMID 16484195. 
  2. ^ Molnár J., Engi H., Hohmann J., Molnár P., Deli J., Wesolowska O., Michalak K., Wang Q. "Reversal of multidrug resistance by natural substances from plants" Current Topics in Medicinal Chemistry 2010 10:17 (1757-1768)

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Cell membrane — Illustration of a Eukaryotic cell membrane The cell membrane or plasma membrane is a biological mem …   Wikipedia

  • Magnesium transporter — This page links directly from the magnesium in biological systems page. Magnesium transporters are proteins that transport magnesium across the cell membrane. All forms of life require magnesium, yet the molecular mechanisms of Mg2+ uptake from… …   Wikipedia

  • Burkholderia pseudomallei — B. pseudomallei colonies on Ashdown s agar showing the characteristic cornflower head morphology. Scientific classification Kingdom …   Wikipedia

  • Antibacterial — Contents 1 History 2 Indications 3 Pharmacodynamics 4 Classe …   Wikipedia

  • Antibiotic resistance — is a type of drug resistance where a microorganism is able to survive exposure to an antibiotic. While a spontaneous or induced genetic mutation in bacteria may confer resistance to antimicrobial drugs, genes that confer resistance can be… …   Wikipedia

  • Pseudomonas aeruginosa — P. aeruginosa on an XLD agar plate. Scientific classification Kingdom …   Wikipedia

  • Antibiotic — In modern usage, an antibiotic is a chemotherapeutic agent with activity against microorganisms such as bacteria, fungi or protozoa. [cite book|author=Davey PG|chapter=Antimicrobial chemotherapy|editor=Ledingham JGG, Warrell DA|title=Concise… …   Wikipedia

  • Pseudomonas — Taxobox color = lightgrey name = Pseudomonas image width = 280px image caption = P. aeruginosa colonies on an agar plate. regnum = Bacteria phylum = Proteobacteria classis = Gamma Proteobacteria ordo = Pseudomonadales familia = Pseudomonadaceae… …   Wikipedia

  • Magnesium transporters — This page links directly from the magnesium in biological systems page. All forms of life require magnesium, and yet the molecular mechanisms of Mg2+ uptake from the environment and the distribution (transport) of this vital element within the… …   Wikipedia

  • Antibiótico — Anuncio público aproximadamente de 1944, durante la Segunda Guerra Mundial, sobre la actividad de la penicilina, uno de los primeros antibióticos …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”