Hawkesbury River Railway Bridge

Hawkesbury River Railway Bridge

Infobox Bridge
bridge_name=Hawkesbury River Railway Bridge



caption=The Hawkesbury River rail bridge looking north
official_name=
carries=Trains
crosses=Hawkesbury River
locale=
maint=
id=
design=
mainspan=
length=
width=
height=
load=
clearance=
below=
traffic=
begin=
complete=
open=
closed=
toll=
map_cue=
map_

map_text=
map_width=
coordinates= coord|33|32|2|S|151|13|42.3|E|region:AU_scale:10000_type:landmark|display=inline,title
lat=
long=

The Hawkesbury River Railway Bridge spans the Hawkesbury River just north of the town of Brooklyn on the northern outskirts of Sydney, Australia. The railway bridge was to be the last link in a railway network that linked Adelaide, Melbourne, Sydney and Brisbane and was a major engineering feat at the time.

Before The Bridge

On the 7th April 1887, the single line section of railway track was opened between Hornsby and the Hawkesbury River. Passengers and goods heading north were unloaded at the River Wharf platform located on the eastern end of Long Island. Here they boarded a double decker, rear paddled-wheeled steamer named "General Gordon" that conveyed them out into Broken Bay and up Brisbane Water into Gosford where they could rejoin trains heading north. Once the 1.6 km long Woy Woy tunnel was completed, the three hour trip was considerably shortened as the boat only had to cross the river and negotiate the lower reaches of Mullet Creek to reach Wondabyne railway station.

First Bridge

The Union Bridge Company from New York was awarded the contract to construct the bridge in January 1886.

The piers consisted of concrete below water with sandstone masonry above. The spans were assembled on Dangar Island and floated 1500 metres or so across to the bridge site on barges.

The bridge had seven spans of 416 feet each for a total length of 2910 feet. Five of the piers were sunk to then record depths of between 150 to 160 feet below high water.

The bridge was officially opened on the 1st May 1889.

Load Testing

At the time, it was the longest structure to be load tested in Australia and so two distinct and separate methods were used. Firstly, optical measurements was taken of the deformation under load at the centre of each span, taken by two sets of observers positioned atop the stone piers. The second test used a water gauge to accurately measure the deformation and the amount of deflection or "set" for each span.

Load testing was carried out on the 24th April 1889 in the presence of various dignitaries including Henry Deane, the Assistant Engineer in Chief of Railways.

During the morning, each span was tested separately by slowly running trains out onto the span, taking the required measurements, backing the train off again and retaking the measurements. This was repeated for each span but on the second span it was found that the optical readings did not match with the water gauge. The cause was found to be a slow leak in a connecting pipe of the water gauge equipment. There was only one water gauge available and as the leak would become worse as the equipment was moved from span to span for each reading it was decided to abandon this method and rely wholly on the optical readings.

A speed test was undertaken during the afternoon by four locomotives, coupled in two pairs. They were started off by a flagman standing above the Long Island tunnel and the trains ran across the causeway from Hawkesbury River station through the Long Island tunnel and out across the bridge at maximum speed.

Problems Arise

Although the track on either end of the bridge was single line, the bridge itself was constructed to double track width with an eye to the future duplication of the line. This led to the undesirable practice of using the bridge as a crossing point for trains operating on this section of line, thus regularly subjecting the structure to maximum stress loads.Perhaps it was this reason that resulted in the double track being replaced by a single track in June 1893.

The bridge gave admirable service until 1927 when it required strengthening and then during the 1930's, cracks developed in one of the piers and it became necessary to replace the entire structure. The depth of sediment had made it impossible to reach bedrock with the foundations on the southernmost pier and it seems that this was the cause of the structural faults. The amount of traffic being carried (up to 100 trains a day) during World War II made the replacement extremely urgent and prior to the new bridge being brought into operation the speed limit on the old bridge was restricted to fifteen miles an hour (abt 25 km/h) and finally down to five miles an hour (8 km/h).

Second Bridge

Work commenced on the new bridge in July 1940 and despite best efforts it was not completed until after the war finished, opening for traffic on the 1st July 1946.

The new bridge was positioned 60 metres to the west or upstream of the original bridge and consists of eight spans in three different lengths and piers sunk to depths of up to 183 feet. New tunnels were bored through Long Island to the south and Cogra Point on the northern approach.

The spans for the new bridge were constructed adjacent to the bridge site on the northern side of Long Island, raised to the correct height, placed onto barges and floated out to the piers at high tide.

Upon completion of the new bridge, the old bridge was removed, however the sandstone piers remain.

References

* Australian Encyclopaedia Vol II and VII. Published by Angus and Robertson 1950

* Australian Railway Historical Society bulletin no. 541 Volume XXXIII November 1982

* Australian Railway Historical Society bulletin no. 334 Volume XVI August 1965

ee also

*Church Point
*Scotland Island

External links

* [http://www.hornsby.nsw.gov.au/uploads/images/old-pylon.jpgPhoto of an old railway bridge pylon next to the new railway bridge]


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Hawkesbury River — Deerubbun River Luftansicht auf den Hawkesbury River und Sydneys NordküsteVorlage:Infobox Fluss/KARTE feh …   Deutsch Wikipedia

  • Hawkesbury River — The Hawkesbury River is one of the major rivers of the coastal region of New South Wales, Australia. The Hawkesbury River and its tributaries virtually encircle the metropolitan region of Sydney. Geography The headwaters of the Hawkesbury, the… …   Wikipedia

  • Main North railway line, New South Wales — For other railways called Main North Line, see Main North Line. For other railways called Great Northern, see Great Northern Railway. [v · d · …   Wikipedia

  • Mooney Mooney Bridge — Official name Mooney Mooney Creek Bridge Carries Road Traffic Crosses …   Wikipedia

  • Newcastle and Central Coast railway line — Newcastle Central Coast line Mode Regional rail line Coach service Owner CityRail Operator(s) …   Wikipedia

  • Union Bridge Company — The Union Bridge Company was a bridge fabricator and contractor with works in Buffalo, New York, (believed closed in 1890 per HAER references) and Athens, Pennsylvania. The Union Bridge company was formed in 1884 as a merger of several other… …   Wikipedia

  • City of Hawkesbury — New South Wales Location in New South Wales Population …   Wikipedia

  • Colo River — The Colo River is a river in New South Wales, Australia. The Colo River begins at the confluence of the Wolgan River and the Capertee River, which respectively drain the Wolgan and Capertee Valleys north of Lithgow. The river flows eastwards and… …   Wikipedia

  • Hunter railway line, New South Wales — Public transport infrastructure in Sydney logo= name=Hunter line transport mode=Regional rail line owner=CityRail operation area= map colour=Purple/Grey stations number=31 interchange names=Newcastle Hamilton Maitland Dungog/Scone operator… …   Wikipedia

  • River Murray — Murray (fleuve) Pour les articles homonymes, voir Murray.  Ne doit pas être confondu avec l autre fleuve Murray d Australie Murray …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”