Feynman-Kac formula

Feynman-Kac formula

The Feynman-Kac formula, named after Richard Feynman and Mark Kac, establishes a link between partial differential equations (PDEs) and stochastic processes. It offers a method of solving certain PDEs by simulating random paths of a stochastic process. Conversely, stochastic PDEs can be solved by deterministic methods.

Suppose we are given the PDE

:frac{partial f}{partial t} + mu(x,t) frac{partial f}{partial x} + frac{1}{2} sigma^2(x,t) frac{partial^2 f}{partial x^2} = 0

subject to the terminal condition

: f(x,T)=psi(x)

where mu, sigma, psi are known functions, T is a parameter and f is the unknown. This is known as the (one-dimensional) Kolmogorov backward equation. Then the Feynman-Kac formula tells us that the solution can be written as an expectation:

: f(x,t) = E [ psi(X_T) | X_t=x ]

where X is an Itō process driven by the equation

:dX = mu(X,t),dt + sigma(X,t),dW,

where W(t) is a Wiener process (also called Brownian motion) and the initial condition for X(t) is X(0) = x. This expectation can then be approximated using Monte Carlo or quasi-Monte Carlo methods.

Proof

Applying Itō's lemma to the unknown function f one gets

:df=left(mu(x,t)frac{partial f}{partial x}+frac{partial f}{partial t}+frac{1}{2}sigma^2(x,t)frac{partial^2 f}{partial x^2} ight),dt+sigma(x,t)frac{partial f}{partial x},dW.

The first term in parentheses is the above PDE and is zero by hypothesis. Integrating both sides one gets

:int_t^T df=f(X_T,T)-f(x,t)=int_t^Tsigma(x,t)frac{partial f}{partial x},dW.

Reorganising and taking the expectation of both sides:

:f(x,t)= extrm{E}left [f(X_T,T) ight] - extrm{E}left [int_t^Tsigma(x,t)frac{partial f}{partial x},dW ight] .

Since the expectation of an Itō integral with respect to a Wiener process W is zero, one gets the desired result:

:f(x,t)= extrm{E}left [f(X_T,T) ight] = extrm{E}left [psi(X_T) ight] = extrm{E}left [psi(X_T)|X_t=x ight] .

Remarks

When originally published by Kac in 1949 [cite journal|last=Kac|first=Mark|title=On Distributions of Certain Wiener Functionals|journal=Transactions of the American Mathematical Society|authorlink=Mark Kac|volume=65|issue=1|pages=1–13|url=http://www.jstor.org/stable/1990512|date=1949|accessdate=2008-05-30|doi=10.2307/1990512] , the Feynman-Kac formula was presented as a formula for determining the distribution of certain Wiener functionals. Suppose we wish to find the expected value of the function

: e^{-int_0^t V(x( au)), d au}

in the case where x( au) is some realization of a diffusion process starting at x(0) = 0. The Feynman-Kac formula says that this expectation is equivalent to the integral of a solution to adiffusion equation. Specifically, under the conditions that u V(x) geq 0,

: Eleft( e^{- u int_0^t V(x( au)), d au} ight) = int_{-infty}^{infty} w(x,t), dx

where w(x,0) = delta(x) and

:frac{partial w}{partial t} = frac{1}{2} frac{partial^2 w}{partial x^2} - u V(x) w.

The Feynman-Kac formula can also be interpreted as a method for evaluating functional integrals of a certain form. If

: I = int f(x(0)) e^{-uint_0^t V(x(t)), dt} g(x(t)), Dx

where the integral is taken over all random walks, then

: I = int w(x,t) g(x), dx

where w(x,t) is a solution to the parabolic partial differential equation

: frac{partial w}{partial t} = frac{1}{2} frac{partial^2 w}{partial x^2} - u V(x) w

with initial condition w(x,0) = f(x).

See also

* Itō's lemma
* Kunita-Watanabe theorem
* Girsanov theorem
* Kolmogorov forward equation (also known as Fokker-Planck equation)

References

*


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Feynman — may refer to: * Richard Feynman ** Feynman diagram ** Feynman graph ** Feynman Kac formula ** The Feynman Lectures on Physics ** Feynman( s) (path) integral, see Path integral formulation ** Feynman parametrization ** Feynman checkerboard **… …   Wikipedia

  • Richard Feynman — Feynman redirects here. For other uses, see Feynman (disambiguation). Richard P. Feynman Richard Feynman at Fermilab Bor …   Wikipedia

  • Mark Kac — Born August 3, 1914 Krzemieniec, Russian Empire …   Wikipedia

  • Itō diffusion — In mathematics mdash; specifically, in stochastic analysis mdash; an Itō diffusion is a solution to a specific type of stochastic differential equation. Itō diffusions are named after the Japanese mathematician Kiyoshi Itō.OverviewA (time… …   Wikipedia

  • Mécanique quantique — La mécanique quantique est la branche de la physique qui a pour but d étudier et de décrire les phénomènes fondamentaux à l œuvre dans les systèmes physiques, plus particulièrement à l échelle atomique et subatomique. C est aussi la partie de la… …   Wikipédia en Français

  • List of mathematics articles (F) — NOTOC F F₄ F algebra F coalgebra F distribution F divergence Fσ set F space F test F theory F. and M. Riesz theorem F1 Score Faà di Bruno s formula Face (geometry) Face configuration Face diagonal Facet (mathematics) Facetting… …   Wikipedia

  • IMSL — International Mathematics and Statistics Library Développeur Visual Numerics Type Analyse Numérique et Statistique IMSL C …   Wikipédia en Français

  • IMSL Bibliothèques Numériques — International Mathematics and Statistics Library Développeur Visual Numerics Type Analyse Numérique et Statistique IMSL C …   Wikipédia en Français

  • International Mathematics and Statistics Library — Développeur Visual Numerics Type Analyse Numérique et Statistique IMSL C …   Wikipédia en Français

  • List of finance topics — Topics in finance include:Fundamental financial concepts* Finance an overview ** Arbitrage ** Capital (economics) ** Capital asset pricing model ** Cash flow ** Cash flow matching ** Debt *** Default *** Consumer debt *** Debt consolidation ***… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”