CYK algorithm

CYK algorithm

The Cocke–Younger–Kasami (CYK) algorithm (alternatively called CKY) is a parsing algorithm for context-free grammars. It employs bottom-up parsing and dynamic programming.

The standard version of CYK operates only on context-free grammars given in Chomsky normal form (CNF). However any context-free grammar may be transformed to a CNF grammar expressing the same language (Sipser 1997).

The importance of the CYK algorithm stems from its high efficiency in certain situations. Using Landau symbols, the worst case running time of CYK is \Theta(n^3 \cdot |G|), where n is the length of the parsed string and |G| is the size of the CNF grammar G. This makes it the most efficient parsing algorithm in terms of worst-case asymptotic complexity, although other algorithms exist with better average running time in many practical scenarios.

Contents

Standard form

The algorithm requires the context-free grammar to be rendered into Chomsky normal form (CNF), because it tests for possibilities to split the current sequence in half. Any context-free grammar can be represented in CNF using only rules of the forms A\rightarrow \alpha and A\rightarrow B C.

As pseudocode

The algorithm in pseudocode is as follows:

let the input be a string S consisting of n characters: a1 ... an.
let the grammar contain r nonterminal symbols R1 ... Rr.
This grammar contains the subset Rs which is the set of start symbols.
let P[n,n,r] be an array of booleans. Initialize all elements of P to false.
for each i = 1 to n
  for each unit production Rj -> ai
for each i = 2 to n -- Length of span
  for each j = 1 to n-i+1 -- Start of span
    for each k = 1 to i-1 -- Partition of span
      for each production RA -> RB RC
        if P[j,k,B] and P[j+k,i-k,C] then set P[j,i,A] = true
if any of P[1,n,x] is true (x is iterated over the set s, where s are all the indices for Rs) then
  S is member of language
else
  S is not member of language

As prose

In informal terms, this algorithm considers every possible subsequence of the sequence of words and sets P[i,j,k] to be true if the subsequence of words starting from i of length j can be generated from Rk. Once it has considered subsequences of length 1, it goes on to subsequences of length 2, and so on. For subsequences of length 2 and greater, it considers every possible partition of the subsequence into two parts, and checks to see if there is some production P → Q R such that Q matches the first part and R matches the second part. If so, it records P as matching the whole subsequence. Once this process is completed, the sentence is recognized by the grammar if the subsequence containing the entire sentence is matched by the start symbol.

CYK table
S
VP
 
S
VP PP
S NP NP
NP V, VP Det. N P Det N
she eats a fish with a fork

Extensions

Generating a parse tree

It is simple to extend the above algorithm to not only determine if a sentence is in a language, but to also construct a parse tree, by storing parse tree nodes as elements of the array, instead of booleans. Since the grammars being recognized can be ambiguous, it is necessary to store a list of nodes (unless one wishes to only pick one possible parse tree); the end result is then a forest of possible parse trees. An alternative formulation employs a second table B[n,n,r] of so-called backpointers.

Parsing non-CNF context-free grammars

As pointed out by Lange & Leiß (2009), the drawback of all known transformations into Chomsky normal form is that they can lead to an undesirable bloat in grammar size. Using g to denote the size of the original grammar, the size blow-up in the worst case may range from g2 to 22g, depending on the transformation algorithm used. For the use in teaching, they propose a slight generalization of the CYK algorithm, "without compromising efficiency of the algorithm, clarity of its presentation, or simplicity of proofs" (Lange & Leiß 2009).

Parsing weighted context-free grammars

It is also possible to extend the CYK algorithm to parse strings using weighted and stochastic context-free grammars. Weights (probabilities) are then stored in the table P instead of booleans, so P[i,j,A] will contain the minimum weight (maximum probability) that the substring from i to j can be derived from A. Further extensions of the algorithm allow all parses of a string to be enumerated from lowest to highest weight (highest to lowest probability).

Valiant's algorithm

The worst case running time of CYK is \Theta(n^3 \cdot |G|), where n is the length of the parsed string and |G| is the size of the CNF grammar G. This makes it one of the most efficient algorithms for recognizing general context-free languages in practice. Valiant (1975) gave an extension of the CYK algorithm. His algorithm computes the same parsing table as the CYK algorithm; yet he showed that algorithms for efficient multiplication of matrices with 0-1-entries can be utilized for performing this computation.

Using the Coppersmith–Winograd algorithm for multiplying these matrices, this gives an asymptotic worst-case running time of O(n^{2.38} \cdot |G|). However, the constant term hidden by the Big O Notation is so large that the Coppersmith–Winograd algorithm is only worthwhile for matrices that are too large to handle on present-day computers (Knuth 1997). The dependence on efficient matrix multiplication cannot be avoided altogether: Lee (2002) has proved that any parser for context-free grammars working in time O(n^{3-\varepsilon} \cdot |G|) can be effectively converted into an algorithm computing the product of (n \times n)-matrices with 0-1-entries in time O(n3 − ε / 3).

See also

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Cyk — or CYK may refer to: CYK algorithm, a grammar related algorithm Cyk, Greater Poland Voivodeship (west central Poland) Cyk, Masovian Voivodeship (east central Poland) Çük, a Tatar holiday This disambiguation page lists articles associated with the …   Wikipedia

  • CYK-алгоритм — Связать? CYK алгоритм (англ. CYK algorithm) алгоритм, применяемый в области теоретической информатики, позволяющий установить, принадлежит ли слово некоторой определенной контекстно свободной грамматике …   Википедия

  • CYK — Der Cocke Younger Kasami Algorithmus (CYK Algorithmus) ist ein Algorithmus aus dem Gebiet der Theoretischen Informatik. Mit ihm lässt sich feststellen, ob ein Wort zu einer bestimmten kontextfreien Sprache gehört. In der Fachsprache bezeichnet… …   Deutsch Wikipedia

  • CYK-Algorithmus — Der Cocke Younger Kasami Algorithmus (CYK Algorithmus) ist ein Algorithmus aus dem Gebiet der Theoretischen Informatik. Mit ihm lässt sich feststellen, ob ein Wort zu einer bestimmten kontextfreien Sprache gehört. In der Fachsprache bezeichnet… …   Deutsch Wikipedia

  • Algoritmo CYK — El algoritmo de Cocke Younger Kasami (CYK) determina si una cadena puede ser generada por una gramática libre de contexto y, si es posible, cómo puede ser generada. Este proceso es conocido como análisis sintáctico de la cadena. El algoritmo es… …   Wikipedia Español

  • GLR parser — In computer science, a GLR parser ( Generalized Left to right Rightmost derivation parser ) is an extension of an LR parser algorithm to handle nondeterministic and ambiguous grammars. First described in a 1986 paper by Masaru Tomita, it has also …   Wikipedia

  • Timeline of algorithms — The following timeline outlines the development of algorithms (mainly mathematical recipes ) since their inception.Before Modern Era* Before Writing about recipes (on cooking, rituals, agriculture and other themes) * c. 1600 BC Babylonians… …   Wikipedia

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Context-free grammar — In formal language theory, a context free grammar (CFG) is a formal grammar in which every production rule is of the form V → w where V is a single nonterminal symbol, and w is a string of terminals and/or nonterminals (w can be empty). The… …   Wikipedia

  • List of algorithms — The following is a list of the algorithms described in Wikipedia. See also the list of data structures, list of algorithm general topics and list of terms relating to algorithms and data structures.If you intend to describe a new algorithm,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”