Mean curvature

Mean curvature

In mathematics, the mean curvature H of a surface S is an extrinsic measure of curvature that comes from differential geometry and that locally describes the curvature of an embedded surface in some ambient space such as Euclidean space.

The concept was introduced by Sophie Germain in her work on elasticity theory.[1][2]

Contents

Definition

Let p be a point on the surface S. Consider all curves Ci on S passing through p. Every such Ci has an associated curvature Ki given at p. Of those curvatures Ki, at least one is characterized as maximal κ1 and one as minimal κ2, and these two curvatures κ12 are known as the principal curvatures of S.

The mean curvature at p\in S is then the average of the principal curvatures (Spivak 1999, Volume 3, Chapter 2), hence the name:

H = {1 \over 2} (\kappa_1 + \kappa_2).

More generally (Spivak 1999, Volume 4, Chapter 7), for a hypersurface T the mean curvature is given as

H=\frac{1}{n}\sum_{i=1}^{n} \kappa_{i}.

More abstractly, the mean curvature is the trace of the second fundamental form divided by n (or equivalently, the shape operator).

Additionally, the mean curvature H may be written in terms of the covariant derivative \nabla as

H\vec{n} = g^{ij}\nabla_i\nabla_j X,

using the Gauss-Weingarten relations, where X(x,t) is a family of smoothly embedded hypersurfaces, \vec{n} a unit normal vector, and gij the metric tensor.

A surface is a minimal surface if and only if the mean curvature is zero. Furthermore, a surface which evolves under the mean curvature of the surface S, is said to obey a heat-type equation called the mean curvature flow equation.

The sphere is the only embedded surface of constant positive mean curvature without boundary or singularities. However, the result is not true when the condition "embedded surface" is weakened to "immersed surface".[3]

Surfaces in 3D space

For a surface defined in 3D space, the mean curvature is related to a unit normal of the surface:

2 H = \nabla \cdot \hat n

where the normal chosen affects the sign of the curvature. The sign of the curvature depends on the choice of normal: the curvature is positive if the surface curves "away" from the normal. The formula above holds for surfaces in 3D space defined in any manner, as long as the divergence of the unit normal may be calculated.

For the special case of a surface defined as a function of two coordinates, eg z = S(x,y), and using downward pointing normal the (doubled) mean curvature expression is

\begin{align}2 H & = \nabla \cdot \left(\frac{\nabla(S - z)}{|\nabla(S - z)|}\right) \\
& = \nabla \cdot \left(\frac{\nabla S}
{\sqrt{1 + (\nabla S)^2}}\right) \\
& = 
\frac{
\left(1 + \left(\frac{\partial S}{\partial x}\right)^2\right) \frac{\partial^2 S}{\partial y^2} - 
2 \frac{\partial S}{\partial x} \frac{\partial S}{\partial y} \frac{\partial^2 S}{\partial x \partial y} + 
\left(1 + \left(\frac{\partial S}{\partial y}\right)^2\right) \frac{\partial^2 S}{\partial x^2}
}{\left(1 + \left(\frac{\partial S}{\partial x}\right)^2 + \left(\frac{\partial S}{\partial y}\right)^2\right)^{3/2}}.
\end{align}

If the surface is additionally known to be axisymmetric with z = S(r),

2 H = \frac{\frac{\partial^2 S}{\partial r^2}}{\left(1 + \left(\frac{\partial S}{\partial r}\right)^2\right)^{3/2}} + {\frac{\partial S}{\partial r}}\frac{1}{r \left(1 + \left(\frac{\partial S}{\partial r}\right)^2\right)^{1/2}},

where {\frac{\partial S}{\partial r}}\frac{1}{r} comes from the derivative of z = S(r)=S\left(\scriptstyle \sqrt{x^2+y^2} \right).

Mean curvature in fluid mechanics

An alternate definition is occasionally used in fluid mechanics to avoid factors of two:

H_f = (\kappa_1 + \kappa_2) \,.

This results in the pressure according to the Young-Laplace equation inside an equilibrium spherical droplet being surface tension times Hf; the two curvatures are equal to the reciprocal of the droplet's radius

\kappa_1 = \kappa_2 = r^{-1} \,.

Minimal surfaces

A rendering of Costa's minimal surface.

A minimal surface is a surface which has zero mean curvature at all points. Classic examples include the catenoid, helicoid and Enneper surface. Recent discoveries include Costa's minimal surface and the Gyroid.

An extension of the idea of a minimal surface are surfaces of constant mean curvature.

See also

Notes

  1. ^ Dubreil-Jacotin on Sophie Germain
  2. ^ Lodder, J. (2003). "Curvature in the Calculus Curriculum". The American Mathematical Monthly 110 (7): 593–605. doi:10.2307/3647744.  edit
  3. ^ http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.pjm/1102702809

References

  • Spivak, Michael (1999), A comprehensive introduction to differential geometry (Volumes 3-4) (3rd ed.), Publish or Perish Press, ISBN 0-914098-72-1, (Volume 3), (Volume 4) .

Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Mean curvature flow — In the field of differential geometry in mathematics, mean curvature flow is an example of a geometric flow of hypersurfaces in a Riemannian manifold (for example, smooth surfaces in 3 dimensional Euclidean space). Intuitively, a family of… …   Wikipedia

  • Inverse mean curvature flow — In the field of differential geometry in mathematics, inverse mean curvature flow (IMCF) is an example of a geometric flow of hypersurfaces a Riemannian manifold (for example, smooth surfaces in 3 dimensional Euclidean space). Intuitively, a… …   Wikipedia

  • Curvature — In mathematics, curvature refers to any of a number of loosely related concepts in different areas of geometry. Intuitively, curvature is the amount by which a geometric object deviates from being flat, or straight in the case of a line, but this …   Wikipedia

  • Mean width — In geometry, the mean width is a measure of dimension length of the size a body; see Hadwiger s theorem for more about the available measures of bodies. In n dimensions, one has to consider (n − 1) dimensional hyperplanes perpendicular to a given …   Wikipedia

  • Curvature of Riemannian manifolds — In mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension at least 3 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous… …   Wikipedia

  • Curvature form — In differential geometry, the curvature form describes curvature of a connection on a principal bundle. It can be considered as an alternative to or generalization of curvature tensor in Riemannian geometry. Contents 1 Definition 1.1 Curvature… …   Wikipedia

  • curvature — /kerr veuh cheuhr, choor /, n. 1. the act of curving or the state of being curved. 2. a curved condition, often abnormal: curvature of the spine. 3. the degree of curving of a line or surface. 4. Geom. a. (at a point on a curve) the derivative of …   Universalium

  • Radius of curvature (applications) — The distance from the center of a sphere or ellipsoid to its surface is its radius. The equivalent surface radius that is described by radial distances at points along the body s surface is its radius of curvature (more formally, the radius of… …   Wikipedia

  • Principal curvature — Saddle surface with normal planes in directions of principal curvatures In differential geometry, the two principal curvatures at a given point of a surface are the eigenvalues of the shape operator at the point. They measure how the surface… …   Wikipedia

  • Sectional curvature — In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature K(σp) depends on a two dimensional plane σp in the tangent space at p. It is the Gaussian curvature of… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”