Pascal's theorem

Pascal's theorem

In projective geometry, Pascal's theorem (aka Hexagrammum Mysticum Theorem) states that if an arbitrary hexagon is inscribed in any conic section, and opposite pairs of sides are extended until they meet, the three intersection points will lie on a straight line, the Pascal line of that configuration. In the Euclidean plane, the theorem has exceptions; its natural home is the projective plane.

This theorem is a generalization of Pappus's hexagon theorem, and the projective dual of Brianchon's theorem. It was discovered by Blaise Pascal when he was only 16 years old.

The theorem was generalized by Möbius in 1847, as follows: suppose a polygon with 4"n" + 2 sides is inscribed in a conic section, and opposite pairs of sides are extended until they meet in 2"n" + 1 points. Then if 2"n" of those points lie on a common line, the last point will be on that line, too.

The simplest proof for Pascal's theorem is via Menelaus' theorem.

Proof of Pascal's theorem

The following proof will actually be just for a single unit circle in the projective plane, but a conic section can be turned into a circle by application of a projective transformation, and since projective transformations preserve incidence properties, then the proof of the circular version should imply the truth of the theorem for ellipses, hyperbolas, and parabolas. Ellipses in particular can be turned into circles by a rescaling of the plane along either the major or minor axis, and a circle of any size can be turned into a unit circle by simultaneous and proportional rescaling of both the "x"- and "y"-axes.

Let "P"1, "P"2, "P"3, "P"4, "P"5, and "P"6 be a set of six points on a unit circle of a projective plane, with the following homogeneous coordinates:: P_1 : [cos heta_1 : sin heta_1 : 1] : P_2 : [cos heta_2 : sin heta_2 : 1] : P_3 : [cos heta_3 : sin heta_3 : 1] : P_4 : [cos heta_4 : sin heta_4 : 1] : P_5 : [cos heta_5 : sin heta_5 : 1] : P_6 : [cos heta_6 : sin heta_6 : 1] .Pascal's theorem then states that the three points which are the intersections of: (1) lines "P"1"P"2 and "P"4"P"5, (2) lines "P"2"P"3 and "P"5"P"6, and (3) lines "P"3"P"4 and "P"6"P"1, are collinear.

Symbolically, this can be stated as:: ((P_1 imes P_2) imes (P_4 imes P_5))cdot ((P_2 imes P_3) imes (P_5 imes P_6)) imes ((P_3 imes P_4) imes (P_6 imes P_1)) = 0, or using the notation 〈,,〉 for the scalar triple product:: langle (P_1 imes P_2) imes (P_4 imes P_5), (P_2 imes P_3) imes (P_5 imes P_6), (P_3 imes P_4) imes (P_6 imes P_1) angle = 0.

Let: Gamma = langle (P_1 imes P_2) imes (P_4 imes P_5), (P_2 imes P_3) imes (P_5 imes P_6), (P_3 imes P_4) imes (P_6 imes P_1) angle. Then the objective is to show that Γ = 0.

First step

Apply the following identity of vector calculus::(A imes B) imes (C imes D) = C langle A,B,D angle - D langle A,B,C angle to produce: Gamma = langle langle P_1, P_2, P_5 angle P_4 - langle P_1, P_2, P_4 angle P_5, :: langle P_2, P_3, P_6 angle P_5 - langle P_2, P_3, P_5 angle P_6, :: langle P_3, P_4, P_1 angle P_6 - langle P_3, P_4, P_6 angle P_1 angle.

Third step

Lemma One. If "Pi", "Pj", "Pk" are points on a unit circle in a projective plane and are expressed in homogeneous coördinates like so:: P_i : [cos heta_i : sin heta_i : 1] : P_j : [cos heta_j : sin heta_j : 1] : P_k : [cos heta_k : sin heta_k : 1] , then: langle P_i,P_j,P_k angle = 4 sin left( { heta_i - heta_j over 2} ight) sin left( { heta_j - heta_k over 2} ight) sin left( { heta_k - heta_i over 2} ight).

This lemma will be proved below, later. Meanwhile, applying it to the target, and letting: S_{ij} = sin left( { heta_i - heta_j over 2} ight) for {"i","j"} ⊂ {1,2,3,4,5,6}, the target becomes: Gamma = 256 , S_{12} S_{25} S_{51} S_{23} S_{36} S_{62} S_{34} S_{41} S_{13} S_{45} S_{56} S_{64} :: {} -256 , S_{12} S_{25} S_{51} S_{23} S_{36} S_{62} S_{34} S_{46} S_{63} S_{45} S_{51} S_{14} :: {} + 256 , S_{12} S_{25} S_{51} S_{23} S_{35} S_{52} S_{34} S_{46} S_{63} S_{46} S_{61} S_{14} :: {} - 256 , S_{12} S_{24} S_{41} S_{23} S_{35} S_{52} S_{34} S_{46} S_{63} S_{56} S_{61} S_{15}.

Fourth step

The target's sum has four terms, each one a product of twelve "Sij"′s out of 15 possible ones.

For each "Sij", if "i" > "j" then replace it with its equivalent −"Sji". Then, for any pair of adjacent "Sij" "Skl" in each product, commute them if "i" > "k" or if "i"="k" but "j" > "l". The result is: Gamma = 256 (S_{12} S_{13} S_{14} S_{15} S_{16}^0 S_{23} S_{24}^0 S_{25} S_{26} S_{34} S_{35}^0 S_{36} S_{45} S_{46} S_{56} :: {} - S_{12} S_{13}^0 S_{14} S_{15}^2 S_{16}^0 S_{23} S_{24}^0 S_{25} S_{26} S_{34} S_{35}^0 S_{36}^2 S_{45} S_{46} S_{56}^0 :: {} + S_{12} S_{13}^0 S_{14} S_{15} S_{16} S_{23} S_{24}^0 S_{25}^2 S_{26}^0 S_{34} S_{35} S_{36} S_{45}^0 S_{46}^2 S_{56}^0 :: {} - S_{12} S_{13}^0 S_{14} S_{15} S_{16} S_{23} S_{24} S_{25} S_{26}^0 S_{34} S_{35} S_{36} S_{45}^0 S_{46} S_{56}).

The "Sij" factors which are raised to the zeroth power denote factors which are actually missing.

Fifth step

Let: T = S_{12} S_{13} S_{14} S_{15} S_{16} S_{23} S_{24} S_{25} S_{26} S_{34} S_{35} S_{36} S_{45} S_{46} S_{56}.

Then the target becomes: Gamma = 256 left( {T over S_{16} S_{24} S_{35 - {T S_{15} S_{36} over S_{13} S_{16} S_{24} S_{35} S_{56 + {T S_{25} S_{46} over S_{13} S_{24} S_{26} S_{45} S_{56 - {T over S_{13} S_{26} S_{45 ight).

eventh step

Lemma Two:: sin left( { heta_a - heta_b over 2} ight) sin left( { heta_c - heta_d over 2} ight) - sin left( { heta_a - heta_c over 2} ight) sin left( { heta_b - heta_d over 2} ight) ::: {} = sin left( { heta_a - heta_d over 2} ight) sin left( { heta_c - heta_b over 2} ight).

Using "Sij" notation, Lemma Two becomes

: S_{ab} S_{cd} - S_{ac} S_{bd} = S_{ad} S_{cb},

which when applied to the target yields

: Gamma = {256 , T over D} (S_{26} S_{45} S_{16} S_{53} + S_{16} S_{35} S_{26} S_{45}).

Replace "S"53 with −"S"35, resulting in

: Gamma = {256, Tover D} (-S_{16} S_{26} S_{35} S_{45} + S_{16} S_{26} S_{35} S_{45})

:: {} = {256, T over D} (0) = 0,

"quod erat demonstrandum".

Proof of Lemma One

: langle P_i,P_j,P_k angle = left| egin{matrix} cos heta_i & sin heta_i & 1 \ cos heta_j & sin heta_j & 1 \ cos heta_k & sin heta_k & 1 end{matrix} ight|

: = cos heta_i sin heta_j + sin heta_i cos heta_k + cos heta_j sin heta_k, :: {} - cos heta_i sin heta_k - sin heta_i cos heta_j - sin heta_j cos heta_k,

: = (cos heta_i sin heta_j - sin heta_i cos heta_j) ,:: {} + (sin heta_i cos heta_k - cos heta_i sin heta_k), :: {} + (cos heta_j sin heta_k - sin heta_j cos heta_k).,

Applying the trigonometric identity: cos a sin b - sin a cos b = sin (b - a) ,results in: langle P_i,P_j,P_k angle = sin ( heta_j - heta_i) + sin ( heta_i - heta_k) + sin ( heta_k - heta_j). ,

Lemma Three:: sin ( heta_a - heta_b) + sin ( heta_b - heta_c) + sin ( heta_c - heta_a) ,

:: = 4 sin left( { heta_a - heta_b over 2} ight) sin left( { heta_b - heta_c over 2} ight) sin left( { heta_a - heta_c over 2} ight).,

Applying Lemma Three yields: langle P_i,P_j,P_k angle = 4 sin left( { heta_j - heta_i over 2} ight) sin left( { heta_i - heta_k over 2} ight) sin left( { heta_j - heta_k over 2} ight),

:: {} = 4 sin left( { heta_i - heta_j over 2} ight) sin left( { heta_j - heta_k over 2} ight) sin left( { heta_k - heta_i over 2} ight), ,

"quod erat demonstrandum."

Proof of Lemma Two

Since

: sin (a - b) = sin a cos b - cos a sin b,,

and letting

: S_i = sin left( { heta_i over 2} ight), qquad C_i = cos left( { heta_i over 2} ight),

then

: S_{ab} S_{cd} = (S_a C_b - C_a S_b) (S_c C_d - C_c S_d) ,:: {} = S_a S_c C_b C_d - S_a S_d C_b C_c ,::: {} - S_b S_c C_a C_d + S_b S_d C_a C_c, ,

: S_{ac} S_{bd} = (S_a C_c - C_a S_c) (S_b C_d - C_b S_d), :: {} = S_a S_b C_c C_d - S_a S_d C_b C_c ,::: {} - S_b S_c C_a C_d + S_c S_d C_a C_b, ,

so that: S_{ab} S_{cd} - S_{ac} S_{bd}, :: {} = S_a S_c C_b C_d - S_a S_b C_c C_d ,::: {} - S_c S_d C_a C_b + S_b S_d C_a C_c ,:: {} = (S_a C_d - C_a S_d) (S_c C_b - C_c S_b), :: {} = S_{ad} S_{cb}, ,"quod erat demonstrandum."

Proof of Lemma Three

: sin (A - B) + sin (B - C) + sin (C - A),

:: = sin A cos B - cos A sin B + sin B cos C - cos B sin C + sin (C - A) ,

:: = cos B (sin A - sin C) + sin B (cos C - cos A) + sin (C - A),

:: = 2 cos B sin left( {A - C over 2} ight) cos left( {A + C over 2} ight) + 2 sin B sin left( {A + C over 2} ight) sin left( {A - C over 2} ight) :::::::: {} + sin (C - A),

:: = 2 sin left( {A - C over 2} ight) Bigg( cos B cos left( {A + C over 2} ight) + sin B sin left( {A + C over 2} ight) Bigg) ::::::::{} + sin (C - A) ,

:: = 2 sin left( {A - C over 2} ight) cos left({A + C over 2} - B ight) + sin (C - A)

:: = 2 sin left( {A - C over 2} ight) cos left( {A + C over 2} - B ight) + 2sin left({C - A over 2} ight) cos left({C - A over 2} ight)

:: = 2 sin left({A - Cover 2} ight) Bigg( cos left({A + C over 2} - B ight) - cos left({C - Aover 2} ight) Bigg)

:: = 2 sin left({A - C over 2} ight) 2 sin left( C - A over 2} + {A + C over 2} - B over 2} ight) sin left(C - A over 2} - {A + C over 2} + Bover 2} ight)

:: = 4 sin left({A - C over 2} ight) sin left({C - B over 2} ight) sin left({B - A over 2} ight)

:: = 4 sin left({A - B over 2} ight) sin left({B - C over 2} ight) sin left({A - C over 2} ight),

"quod erat demonstrandum."

External links

* [http://www.cut-the-knot.org/Curriculum/Geometry/Pascal.shtml Interactive demo of Pascal's theorem (Java required)] at cut-the-knot
* [http://www.cut-the-knot.org/Curriculum/Geometry/PascalLines.shtml 60 Pascal Lines (Java required)] at cut-the-knot
* [http://www.jimloy.com/cindy/pascal.htm Another one]
* [http://agutie.homestead.com/files/circle/pascal_theorem_proof.htm Pascal's Mystic Hexagram Theorem Proof] applying Menelaus’ Theorem


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Pascal's theorem — Geom. the theorem that the lines joining adjacent vertices of a hexagon intersect the same straight line if alternate vertices lie on two intersecting straight lines. [named after PASCAL] * * * …   Universalium

  • Pascal's theorem — Geom. the theorem that the lines joining adjacent vertices of a hexagon intersect the same straight line if alternate vertices lie on two intersecting straight lines. [named after PASCAL] …   Useful english dictionary

  • Pascal (disambiguation) — Pascal or PASCAL may refer to:People* Pascal (name), a given name or surname * Blaise Pascal (1623–1662), French mathematician and philosopherFictional characters* Pascal, the main character in the film The Red Balloon * Pascal, a character in… …   Wikipedia

  • Pascal — Contents 1 People 2 Things named after Blaise Pascal 3 Fictional characters …   Wikipedia

  • Pascal, Blaise — (1623 1662)    mathematician, physicist, philosopher    Considered one of the great minds of Western intellectual history, Blaise Pascal was born in Clermont Ferrand. His father, who had early recognized his exceptional gifts, oversaw his… …   France. A reference guide from Renaissance to the Present

  • Pascal's triangle — The first six rows of Pascal s triangle In mathematics, Pascal s triangle is a triangular array of the binomial coefficients in a triangle. It is named after the French mathematician, Blaise Pascal. It is known as Pascal s triangle in much of the …   Wikipedia

  • Theorem der endlos tippenden Affen — Durch zufälliges Tippen von unendlicher Dauer auf einer Schreibmaschine werden mit Sicherheit alle Texte Shakespeares oder diverser Nationalbibliotheken entstehen. Das Infinite Monkey Theorem (v. engl. infinite „unendlich“; monkey „Affe“; theorem …   Deutsch Wikipedia

  • Satz von Pascal — Der Satz von Pascal (nach Blaise Pascal) ist eine Aussage der projektiven Geometrie und besagt: Liegen die Eckpunkte eines willkürlich gewählten Sechsecks auf einem Kegelschnitt, so liegen die Schnittpunkte der drei gegenüberliegenden Seitenpaare …   Deutsch Wikipedia

  • Pascal's pyramid — In mathematics, Pascal s pyramid is a three dimensional generalization of Pascal s triangle. Just as Pascal s triangle gives coefficients for the terms of a binomial expansion, so Pascal s pyramid gives coefficients for a trinomial expansion.… …   Wikipedia

  • Pappus's hexagon theorem — (attributed to Pappus of Alexandria) states that given one set of collinear points A , B , C , and another set of collinear points a , b , c , then the intersection points x , y , z of line pairs Ab and aB , Ac and aC , Bc and bC are collinear. ( …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”