Trilateration

Trilateration

Trilateration is a method of determining the relative positions of objects using the geometry of triangles in a similar fashion as triangulation. Unlike triangulation, which uses angle measurements (together with at least one known distance) to calculate the subject's location, trilateration uses the known locations of two or more reference points, and the measured distance between the subject and each reference point. To accurately and uniquely determine the relative location of a point on a 2D plane using trilateration alone, generally at least 3 reference points are needed.

Derivation

A mathematical derivation for the solution of a three-dimensional trilateration problem can be found by taking the formulae for three spheres and setting them equal to each other. To do this, we must apply three constraints to the centers of these spheres; all three must be on the z=0 plane, one must be on the origin, and one other must be on the x-axis. It is, however, possible to translate any set of three points to comply with these constraints, find the solution point, and then reverse the translation to find the solution point in the original coordinate system.

Starting with three spheres,

:r_1^2=x^2+y^2+z^2,

:r_2^2=(x-d)^2+y^2+z^2,

and

:r_3^2=(x-i)^2+(y-j)^2+z^2,

we subtract the second from the first and solve for "x":

:x=frac{r_1^2-r_2^2+d^2}{2d}.

Substituting this back into the formula for the first sphere produces the formula for a circle, the solution to the intersection of the first two spheres:

:y^2+z^2=r_1^2-frac{(r_1^2-r_2^2+d^2)^2}{4d^2}.

Substituting :y^2+z^2=r_1^2-x^2 into the formula for the third sphere and solving for y there results:
:y=frac{r_1^2-r_3^2-x^2+(x-i)^2+j^2}{2j}=frac{r_1^2-r_3^2+i^2+j^2}{2j}-frac{i}{j}x.

Now that we have the "x"- and "y"-coordinates of the solution point, we can simply rearrange the formula for the first sphere to find the "z"-coordinate:

:z=pm sqrt{r_1^2-x^2-y^2}

Now we have the solution to all three points "x", "y" and "z". Because "z" is expressed as the positive or negative square root, it is possible for there to be zero, one or two solutions to the problem.

This last part can be visualized as taking the circle found from intersecting the first and second sphere and intersecting that with the third sphere. If that circle falls entirely outside of the sphere, "z" is equal to the square root of a negative number: no real solution exists. If that circle touches the sphere on exactly one point, "z" is equal to zero. If that circle touches the surface of the sphere at two points, then "z" is equal to plus or minus the square root of a positive number.

In the case of no solution, a not uncommon one when using noisy data, the nearest solution is zero. One should be careful, though, to do a sanity check and assume zero only when the error is appropriately small.

In the case of two solutions, some technique must be used to disambiguate between the two. This can be done mathematically, by using a fourth sphere with its center not being located on the same plane as the centers of the other three, and determining which point lies closest to the surface of this sphere. Or it can be done logically—for example, GPS receivers assume that the point that lies inside the orbit of the satellites is the correct one when faced with this ambiguity, because it is generally safe to assume that the user is never in space, outside the satellites' orbits.

Error model

When measurement error is introduced into the picture, things become a little more complicated. If we know that the distance from "P" to a reference point lies in a range (a closed interval) ["r"1, "r"2] , then we know that "P" lies in a circular band between the circles of those two radii. If we know a range for another point, we can take the intersection, which will be either one or two areas bounded by circular arcs. A third point will usually narrow it down to a single area, but this area may still be of significant size; additional reference points can help shrink it further, but as the area shrinks more measurements quickly become less useful. In three dimensions, we are instead intersecting spherical shells with thickness, similar to bowling balls.

This new model emphasizes the importance of choosing three points that are in very different directions — if the points are relatively close together and all far from the point being located, it will take very precise measurement to find the point using trilateration.

Application

Trilateration can be used in lightning strike location detection. Detectors operating on a common clocking system can use the variation in arrival time of the radio-frequency emissions accompanying a strike to determine the distances from each detector to the strike. Such systems can be useful in forestry for fire prevention and in storm tracking.

See also

* Multilateration - position estimation using measurements of time difference of arrival at (or from) three or more sites.
* Resection
* Triangulation


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Trilateration — ist ein mathematisches Verfahren zur Positionsbestimmung eines Punktes im zweidimensionalen Raum, dessen Abstand zu drei anderen Punkten mit bekannter Position gegeben ist. Es wird in der Landesvermessung und der Ingenieurvermessung zur… …   Deutsch Wikipedia

  • Trilateration — Trilatération La trilatération est une méthode mathématique permettant de déterminer la position relative d un point en utilisant la géométrie des triangles tout comme la triangulation. Mais contrairement à cette dernière, qui utilise les angles… …   Wikipédia en Français

  • trilatération — ● trilatération nom féminin (bas latin trilaterus, qui a trois côtés) Procédé géodésique ou topographique dans lequel on détermine les coordonnées des sommets de l ensemble de triangles constituant le réseau à partir de la mesure des longueurs… …   Encyclopédie Universelle

  • Trilateration —   [zu lateinisch trilaterus »dreiseitig«] die, / en, Geodäsie: Verfahren zur Bestimmung von Lagefestpunkten durch elektronische Distanzmessung (Distanz). Hierzu werden in einem Dreiecksnetz sämtliche Seiten und zur Kontrolle auch übergreifende… …   Universal-Lexikon

  • Trilatération — La trilatération est une méthode mathématique permettant de déterminer la position relative d un point en utilisant la géométrie des triangles tout comme la triangulation. Mais contrairement à cette dernière, qui utilise les angles et les… …   Wikipédia en Français

  • trilateration — /truy lat euh ray sheuhn/, n. Survey. a method of determining the relative positions of three or more points by treating these points as vertices of a triangle or triangles of which the angles and sides can be measured. [TRILATER(AL) + ATION] * * …   Universalium

  • Trilateration — Vermessungsverfahren, mit dem ein Netz von Lagefestpunkten ausschließlich durch elektronische Distanzmessungen (meist in Diagonalvierecken) bestimmt wird. Heute kombiniert man die Trilateration mit der Triangulation oder verwendet die Verfahren… …   Erläuterung wichtiger Begriffe des Bauwesens

  • trilateration — noun The determination of the location of a point based on its distance from three other points …   Wiktionary

  • Trilateration — Tri|la|te|ra|ti|on die; <zu ↑...ation> Verfahren zur Lagebestimmung von Festpunkten der Erdoberfläche durch ein Netz von Dreiecken …   Das große Fremdwörterbuch

  • trilateration — tri·lat·er·a·tion …   English syllables

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”