Lateral earth pressure

Lateral earth pressure

Lateral earth pressure is the pressure that soil exerts in the horizontal plane. The common applications of lateral earth pressure theory are for the design of ground engineering structures such as retaining walls, basements, tunnels, and to determine the friction on the sides of deep foundations.

To describe the pressure a soil will exert, a lateral earth pressure coefficient, K, is used. K is the ratio of lateral (horizontal) pressure to vertical pressure (K = σh'/σv'). Thus horizontal earth pressure is assumed to be directly proportional to the vertical pressure at any given point in the soil profile. K can depend on the soil properties and the stress history of the soil. Lateral earth pressure coefficients are broken up into three categories: at-rest, active, and passive.

The pressure coefficient used in geotechnical engineering analyses depends on the characteristics of its application. There are many theories for predicting lateral earth pressure; some are empirically based, and some are analytically derived.

At rest pressure

At rest lateral earth pressure, represented as K0, is the "in situ" horizontal pressure. It can be measured directly by a dilatometer test (DMT) or a borehole pressuremeter test (PMT). As these are rather expensive tests, empirical relations have been created in order to predict at rest pressure with less involved soil testing, and relate to the angle of shearing resistance. Two of the more commonly used are presented below.

Jaky (1948) [Jaky J. (1948) Pressure in soils, 2nd ICSMFE, London, Vol. 1, pp 103-107.] for normally consolidated soils:

: K_{0(NC)} = 1 - sin phi '

Mayne & Kulhawy (1982) [Mayne, P.W. and Kulhawy, F.H. (1982). “K0-OCR relationships in soil”. Journal of GeotechnicalEngineering, Vol. 108 (GT6), 851-872.] for overconsolidated soils:

: K_{0(OC)} = K_{0(NC)} * OCR^{(sin phi ')}

The latter requires the OCR profile with depth to be determined.

To estimate K0 due to compaction pressures, refer Ingold (1979) [Ingold, T.S., (1979) The effects of compaction on retaining walls, Gèotechnique, 29, p265-283.]

Active and passive pressure

The active state occurs when a soil mass is allowed to relax or move outward to the point of reaching the limiting strength of the soil; that is, the soil is at the failure condition in extension. Thus it is the minimum lateral soil pressure that may be exerted. Conversely, the passive state occurs when a soil mass is externally forced to the limiting strength (that is, failure) of the soil in compression. It is the maximum lateral soil pressure that may be exerted. Thus active and passive pressures define the minimum and maximum possible pressures respectively that may be exerted in a horizontal plane.

Rankine theory

Rankine's theory, developed in 1857 [Rankine, W. (1857) On the stability of loose earth. Philosophical Transactions of the Royal Society of London, Vol. 147.] , is a stress field solution that predicts active and passive earth pressure. It assumes that the soil is cohesionless, the wall is frictionless, the soil-wall interface is vertical, the failure surface on which the soil moves is planar, and the resultant force is angled parallel to the backfill surface. The equations for active and passive lateral earth pressure coefficients are given below. Note that φ' is the angle of shearing resistance of the soil and the backfill is inclined at angle β to the horizontal.

: K_a = coseta frac{cos eta - left(cos ^2 eta - cos ^2 phi ight)^{1/2{cos eta + left(cos ^2 eta - cos ^2 phi ight)^{1/2

: K_p = coseta frac{cos eta + left(cos ^2 eta - cos ^2 phi ight)^{1/2{cos eta - left(cos ^2 eta - cos ^2 phi ight)^{1/2

For the case where β is 0, the above equations simplify to

: K_a = an ^2 left( 45 - frac{phi}{2} ight)

: K_p = an ^2 left( 45 + frac{phi}{2} ight)

Coulomb theory

Coulomb (1776) [Coulomb C.A., (1776). Essai sur une application des regles des maximis et minimis a quelques problemes de statique relatifs a l'architecture. Memoires de l'Academie Royale pres Divers Savants, Vol. 7] first studied the problem of lateral earth pressures on retaining structures. He used limit equilibrium theory, which considers the failing soil block as a free body in order to determine the limiting horizontal earth pressure. The limiting horizontal pressures at failure in extension or compression are used to determine the "K"a and "K"p respectively. Since the problem is indeterminate [Kramer S.L. (1996) Earthquake Geotechnical Engineering, Prentice Hall, New Jersey] , a number of potential failure surfaces must be analysed to identify the critical failure surface (i.e. the surface that produces the maximum or minimum thrust on the wall). Mayniel (1908) [Mayniel K., (1808), Traité expérimental, analytique et preatique de la poussée des terres et des murs de revêtement, Paris.] later extended Coulomb's equations to account for wall friction, symbolized by "δ". Müller-Breslau (1906) [Müller-Breslau H., (1906) Erddruck auf Stutzmauern, Alfred Kroner, Stuttgart. ] further generalized Mayniel's equations for a non-horizontal backfill and a non-vertical soil-wall interface (represented by angle θ from the vertical).

: K_a = frac{ cos ^2 left( phi - heta ight)}{cos ^2 heta cos left( delta + heta ight) left( 1 + sqrt{ frac{ sin left( delta + phi ight) sin left( phi - eta ight)}{cos left( delta + heta ight) cos left( eta - heta ight) ight) ^2}

: K_p = frac{ cos ^2 left( phi + heta ight)}{cos ^2 heta cos left( delta - heta ight) left( 1 - sqrt{ frac{ sin left( delta + phi ight) sin left( phi + eta ight)}{cos left( delta - heta ight) cos left( eta - heta ight) ight) ^2}

Caquot and Kerisel

In 1948, Albert Caquot (1881-1976) and Jean Kerisel (1908-2005) developed an advanced theory that modified Muller-Breslau's equations to account for a non-planar rupture surface. They used a logarithmic spiral to represent the rupture surface instead. This modification is extremely important for passive earth pressure where there is soil-wall friction. Mayniel and Muller-Breslau's equations are unconservative in this situation and are dangerous to apply. For the active pressure coefficient, the logarithmic spiral rupture surface provides a negligible difference compared to Muller-Breslau. These equations are too complex to use, so tables or computers are used instead..

Equivalent fluid pressure

Terzaghi and Peck, in 1948, developed empirical charts for predicting lateral pressures. Only the soil's classification and backfill slope angle are necessary to use the charts. In order for this method to be safe to implement, the values given are conservative. This method was developed with Rankine theory.

Bell's relation

For soils with cohesion, Bell developed an analytical solution that uses the square root of the pressure coefficient to predict the cohesion's contribution to the overall resulting pressure. These equations represent the total lateral earth pressure. The first term represents the non-cohesive contribution and the second term the cohesive contribution. The first equation is for an active situation and the second for passive situations.

: sigma_h = K_a sigma_v - 2c sqrt{K_a} : sigma_h = K_p sigma_v + 2c sqrt{K_p}

See also

* Mohr-Coulomb theory
* Soil mechanics

References

*Harvard reference|Surname=Coduto|Given=Donald|Authorlink=|Year=2001|Title=Foundation Design|Place=|Publisher=Prentice-Hall|ID=ISBN 0-13-589706-8|URL=
* [http://www.dot.ca.gov/hq/esc/construction/manuals/OSCCompleteManuals/TrenchingandShoringManualRev12.pdf California Department of Transportation Material on Lateral Earth Pressure]

Notes


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Presión lateral del suelo — Saltar a navegación, búsqueda Un ejemplo de los principios de presión horizontal: un muro de contención de tierras Presión lateral del suelo es la presión que el suelo ejerce en el plano horizontal. Las aplicaciones más comunes …   Wikipedia Español

  • Overburden pressure — Overburden pressure, also called lithostatic pressure or vertical stress, is the pressure or stress imposed on a layer of soil or rock by the weight of overlying material. The overburden pressure at a depth z is given by where ρ(z) is the density …   Wikipedia

  • Mechanically stabilized earth — A diagram of a mechanically stabilized earth wall as it would be modeled in a finite element analysis. Mechanically stabilized earth or MSE is soil constructed with artificial reinforcing. It can be used for retaining walls, bridge abutments,… …   Wikipedia

  • earth — /errth/, n. 1. (often cap.) the planet third in order from the sun, having an equatorial diameter of 7926 mi. (12,755 km) and a polar diameter of 7900 mi. (12,714 km), a mean distance from the sun of 92.9 million mi. (149.6 million km), and a… …   Universalium

  • Earth Sciences — ▪ 2009 Introduction Geology and Geochemistry       The theme of the 33rd International Geological Congress, which was held in Norway in August 2008, was “Earth System Science: Foundation for Sustainable Development.” It was attended by nearly… …   Universalium

  • Pressure — This article is about pressure in the physical sciences. For other uses, see Pressure (disambiguation). Pressure as exerted by particle collisions inside a closed container …   Wikipedia

  • Earth exploration — Introduction   the investigation of the surface of the Earth and of its interior.  By the beginning of the 20th century most of the Earth s surface had been explored, at least superficially, except for the Arctic and Antarctic regions. Today the… …   Universalium

  • lateral line system — ▪ biology also called  lateralis system   a system of tactile sense organs (senses), unique to aquatic vertebrates (vertebrate) from cyclostome fishes (cyclostome) (lampreys (lamprey) and hagfish) to amphibians (amphibian), that serves to detect… …   Universalium

  • high-pressure phenomena — ▪ physics Introduction       changes in physical, chemical, and structural characteristics that matter undergoes when subjected to high pressure. pressure thus serves as a versatile tool in materials research, and it is especially important in… …   Universalium

  • Expanding Earth theory — The Expanding Earth theory is an attempt to explain the position and movement of continents (continental drift) on the surface of the Earth. The expanded earth theory (and plate tectonics) incorporates the appearance of new crustal material at… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”