Cathode bias

Cathode bias

In order for a vacuum tube (or valve) to operate in a fairly linear region of its characteristic curve, the grid element must be maintained at a bias voltage more negative than the cathode. This is called cathode bias.

Early techniques

Early experimenters and manufacturers used a battery to provide this bias. This battery, called the "C" or bias battery provided voltage but almost never was called upon to deliver current. Thus, such batteries lasted nearly as long in service as they would have on a shelf. In 1985, The Department of Engineering and Technology at Cuesta College in San Luis Obispo, California was presented with a "C" battery date stamped 1927. Department Chairman W.E. English and Instructor W.T. Hanley conducted experiments which demonstrated that the battery still performed satisfactorily in its originally intended role more than 50 years after its manufacture.

Battery bias, however, is not self adjusting, and does not accommodate differences between a new tube and one that has aged, differences between various tubes of the same type, or substitutions that may be made in tube type by repair technicians. Cathode bias automatically accounts for all these possibilities. It is inherent in the technique that the bias level is set by the operation of each individual tube.

Establishing cathode bias

To establish cathode bias, a resistor is placed between the emitting element, or Cathode and the negative return of the "B" or HT supply. Current drawn through this resistor by tube conduction places the cathode slightly more positive than the negative return. The grid input is returned directly to the negative supply, causing it to be negative with respect to the cathode. Thus, changes in tube conduction are automatically compensated by changes in bias.

This scheme inherently introduces dynamic even harmonic distortion. As the input signal becomes more positive, cathode current increases, increasing bias and reducing gain. As the input signal becomes more negative, cathode current decreases, decreasing bias and increasing gain. The result is a plate signal with positive excursions greater than the negative input and negative excursions smaller than the positive input. It must be borne in mind that the input and output signals are ideally exactly out of phase. Since Cathode Bias is normally employed at audio or very low radio frequencies, issues such as transit time and interelectrode capacitance may be disregarded and the ideal assumed.

Overcoming problems

To overcome this problem, the bias resistor is typically shunted by a capacitor. In general, the capacitor value is selected such that the time constant of the capacitor and bias resistor is an order of magnitude greater than the period of the lowest frequency to be amplified. The capacitor thus acts as a dynamic battery, and maintains the bias constant through input signal swings.

In some designs, the degeneratve feedback inherent in cathode bias may be desirable. In this case, two carefully designed successive stages may be employed, such that the distortion introduced by the first stage is exactly cancelled by that introduced in the second. This technique is not recommended, as the design considerations become very complex. Other degenerative feedback techniques are easier to design, and should be used.

An exception to the general rule may be made in the case of "Push-Pull", or balanced circuits. A pair of tubes, driven by identical signals 180 degrees out of phase, may share a common unbypassed cathode resistor. Slight differences in tube conduction are then dynamically balanced by bias variations that tend to reduce distortion. This technique is useful in the input circuits of balanced line receivers or Push-Pull power output circuits.


Cathode bias is also used to achieve phase inversion. In a more simple circuit, which has less than unity gain, the cathode and plate resistors are made equal. In accordance with Kirchoff's law, the current through both resistors will be equal, thus the voltage across them will also be equal. As the plate becomes more negative, the cathode will become more positive, and conversely. The resulting signals are capacitively coupled to any succeeding stages, providing a pair of signals 180o out of phase.

The other technique is to use a pair of amplifier tubes with a common cathode resistor. In this case, the input tube is operated as a standard common cathode amplifier, while its twin is operated in common grid mode. The input signal is amplified by the input tube in the normal fashion. An unbypassed cathode resistor, common to both tubes, couples the signal to the cathode of the second amplifier, which is operated in "Grounded grid" mode, with the grid resistor bypassed by a capacitor which maintains a constant grid voltage. The pair of tubes produce outputs exactly out of phase, but the gain of the grounded grid amplifier is slightly higher, requiring that their plate resistances be different in order to maintain balance.

Mathematically, the gain of the phase inverting stage is given by the product of the amplification factor and the load impedance divided by the sum of the plate resistance and the load impedance. The gain of the in phase stage is given by the product of (one plus the amplification factor) and the load impedance divided by the sum of the plate resistance and the load impedance. In order for the gains to be equal, it is customary to use different values of plate resistance. For example, in such a phase inverting circuit using a 12AX7, the inverting stage would have a plate resistor of 100KΩ while the in phase stage would use a resistor of 82 KΩ. Mathematically, it works out pretty close.

Another problem is a slight reduction in gain. The cathode, or bias resistor appears in series with the plate, or load resistor. The bias voltage must be subtracted from the total "B" or HT voltage in gain calculations. In most circuits, this problem is easily overcome by selecting a load impedance at least two orders of magnitude greater than the bias resistance. For example, a 1K bias resistor will have virtually no effect if the load impedance is at least 100K. These values were, in fact, used by Leo Fender in many of his guitar amplifier designs. Refer to "The Tube Amp Book", schematic section.

ources for further information

Perhaps the best discussion of cathode bias, in terms of clarity and simplicity, is to be found in one of the many editions of "The RCA Receiving Tube Manual", in the applications section. This manual was published in many forms and editions for over 40 years, but has long since been out of print. Edition RC-17, released around 1971 is likely to be the most available. Information in this article is based on that edition.

Excellent discussions of cathode bias may also be found in "Fundamental Electronics", by Bernard Grob, published in no fewer than eight editions over the years by McGraw Hill. U.S. Air Force Manuals 52-8 and 101-8 also cover this subject, although they have long been out of print. Copies may still be available from the U.S. Government Printing Office. The problem is that the technology is getting old fast, and nobody writes much about it any more.

Wikimedia Foundation. 2010.

Look at other dictionaries:

  • cathode bias — katodinis priešįtampis statusas T sritis fizika atitikmenys: angl. cathode bias vok. Kathodenvorspannung, f rus. катодное смещение, n; смещение на катоде, n pranc. polarisation de cathode, f …   Fizikos terminų žodynas

  • Cathode bias — Катодное смещение, смещение на катоде …   Краткий толковый словарь по полиграфии

  • Cathode — Diagram of a copper cathode in a galvanic cell (e.g., a battery). A positive current i flows out of the cathode (CCD mnemonic: Cathode Current Departs). A cathode is an electrode through which electric current flows out of a polarized electrical… …   Wikipedia

  • Bias (disambiguation) — Bias is an inclination towards something, or a predisposition, partiality, prejudice, preference, or predilection. Bias may also refer to:In science and statistics: * Bias (statistics), the systematic distortion of a statistic ** A biased sample… …   Wikipedia

  • bias — [bī′əs] n. pl. biases [MFr biais, a slope, slant < OFr < OProv < ?] 1. a line, cut or sewn diagonally across the weave of cloth, as in making seams, binding tape, etc. 2. a mental leaning or inclination; partiality; bent 3. Lawn Bowling… …   English World dictionary

  • polarisation de cathode — katodinis priešįtampis statusas T sritis fizika atitikmenys: angl. cathode bias vok. Kathodenvorspannung, f rus. катодное смещение, n; смещение на катоде, n pranc. polarisation de cathode, f …   Fizikos terminų žodynas

  • Grid bias — is a DC voltage applied to electron tubes (or valves in British English) with three electrodes or more, such as triodes. The control grid (usually the first grid) of these devices is used to control the electron flow from the heated cathode to… …   Wikipedia

  • grid bias — Electronics. the potential difference applied between a grid and the cathode of a vacuum tube. Also called C bias. [1925 30] * * * …   Universalium

  • grid bias — n. a steady, direct current voltage applied to the control grid of an electron tube to make it negative with respect to the cathode …   English World dictionary

  • c-bias — ˈ ̷ ̷| ̷ ̷ ̷ ̷ noun Usage: usually capitalized C : the voltage applied to the control grid of a vacuum tube to make it negative with respect to the cathode * * * /see buy euhs/, n. Electronics. See grid bias …   Useful english dictionary

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.