Singular point of an algebraic variety

Singular point of an algebraic variety

In mathematics, a singular point of an algebraic variety V is a point P that is 'special' (so, singular), in the geometric sense that V is not locally flat there. In the case of an algebraic curve, a plane curve that has a double point, such as the cubic curve

y2 = x2(x + 1)

exhibits at (0, 0), cannot simply be parametrized near the origin. A plot of this curve is below with the singular point at the origin. An example of singular point is when a graph crosses over itself:

Singularptfn.JPG

The reason for that algebraically is that both sides of the equation show powers higher than 1 of the variables x and y. In terms of differential calculus, if

F(x,y) = y2x2(x + 1),

so that the curve has equation

F(x,y) = 0,

then the partial derivatives of F with respect to both x and y vanish at (0,0). This means that if we try to use the implicit function theorem to express y as a function of x near y = 0, we shall fail; and indeed no linear combination of x and y is a function of another essentially different one, so that this is a geometric condition not tied to any choice of coordinate axes.

In general for a hypersurface

F(x, y, z, ...) = 0

the singular points are those at which all the partial derivatives simultaneously vanish. A general algebraic variety V being defined by several polynomials, or in algebraic terms an ideal of polynomials, the condition on a point P to be a singular point of V is that the linear parts of those polynomials are linearly dependent, when written in terms of variables XiPi that make P the origin of coordinates.

Points of V that are not singular are called non-singular or regular. It is always true that most points are non-singular in the sense that the non-singular points form a set that is both open and non-empty.[1]

It is important to note that the geometric criterion for a point of a variety to be singular (mentioned earlier), that it is a point where the variety is not "locally flat", can be very hard to recognize for varieties over a general field. The work of Milnor and others shows that, over the complex numbers, the statement is precisely true in every reasonable interpretation. But, as Milnor points out, over the real numbers "The equation y3 + 2x2yx4 = 0 ... can actually be solved for y as a real analytic function of x" (so that the variety it defines is the graph of a real analytic function, and therefore a real analytic manifold) "but this equation also defines a variety having a singular point at the origin".[2] Obviously the "geometric" meaning of "locally flat" over fields of finite characteristic, or ultrametric fields, is even more vexed.

Singular points of smooth mappings

As the notion of singular points is a purely local property the above definition can be extended to cover the wider class of smooth mappings, (functions from M to Rn where all derivatives exist). Analysis of these singular points can be reduced to the algebraic variety case by considering the jets of the mapping. The k-th jet is the Taylor series of the mapping truncated at degree k and deleting the constant term.

See also

References

  1. ^ Hartshorne, Algebraic Geometry, page 33
  2. ^ Milnor, pp. 12–13

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Algebraic variety — This article is about algebraic varieties. For the term a variety of algebras , and an explanation of the difference between a variety of algebras and an algebraic variety, see variety (universal algebra). The twisted cubic is a projective… …   Wikipedia

  • Singular point of a curve — In geometry, a singular point on a curve is one where the curve is not given by a smooth embedding of a parameter. The precise definition of a singular point depends on the type of curve being studied. Contents 1 Algebraic curves in the plane 1.1 …   Wikipedia

  • Singular points — occur in various different situations in geometry *Singular point of an algebraic variety *Singular point of a curve *Mathematical singularityee also*Singularity theory …   Wikipedia

  • Pinch point (mathematics) — Section of the Whitney umbrella, an example of pinch point singularity. In geometry, a pinch point or cuspidal point is a type of singular point on an algebraic surface. The equation for the surface near a pinch point may be put in the form where …   Wikipedia

  • Algebraic curve — In algebraic geometry, an algebraic curve is an algebraic variety of dimension one. The theory of these curves in general was quite fully developed in the nineteenth century, after many particular examples had been considered, starting with… …   Wikipedia

  • Algebraic surface — In mathematics, an algebraic surface is an algebraic variety of dimension two. In the case of geometry over the field of complex numbers, an algebraic surface is therefore of complex dimension two (as a complex manifold, when it is non singular)… …   Wikipedia

  • Abelian variety — In mathematics, particularly in algebraic geometry, complex analysis and number theory, an Abelian variety is a projective algebraic variety that is at the same time an algebraic group, i.e., has a group law that can be defined by regular… …   Wikipedia

  • List of algebraic geometry topics — This is a list of algebraic geometry topics, by Wikipedia page. Contents 1 Classical topics in projective geometry 2 Algebraic curves 3 Algebraic surfaces 4 …   Wikipedia

  • Divisor (algebraic geometry) — In algebraic geometry, divisors are a generalization of codimension one subvarieties of algebraic varieties; two different generalizations are in common use, Cartier divisors and Weil divisors (named for Pierre Cartier and André Weil). These… …   Wikipedia

  • Albanese variety — In mathematics, the Albanese variety is a construction of algebraic geometry, which for an algebraic variety V solves a universal problem for morphisms of V into abelian varieties; it is the abelianization of a variety, and expresses abelian… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”