Boltzmann equation

Boltzmann equation

The Boltzmann equation, also often known as the Boltzmann transport equation, devised by Ludwig Boltzmann, describes the statistical distribution of one particle in rarefied gas. It is one of the most important equations of non-equilibrium statistical mechanics, the area of statistical mechanics that deals with systems far from thermodynamic equilibrium; for instance, when there is an applied temperature gradient or electric field. The Boltzmann equation is used to study how a gas or fluid transports physical quantities such as heat and momentum, and thus to derive transport properties such as viscosity, and thermal conductivity. The problem of existence and uniqueness of solutions to the Boltzmann equation is still not fully resolved but the recent results are quite promising.[1][2]

Contents

Overview

The Boltzmann equation is an equation for the time (t) evolution of the distribution (properly a density) function f(x, p, t) in one-particle phase space, where x and p are position and momentum, respectively. The distribution is defined so that

f(\mathbf{x},\mathbf{p},t)\,d\mathbf{x}\,d\mathbf{p}

is the number of molecules which, at time t, have positions lying within a volume element d3x about x and momenta lying within a momentum-space element d3p about p.[3]

Consider those particles described by f experiencing an external force F. Then f must satisfy, in absence of collisions,


f(\mathbf{x}+\frac{\mathbf{p}}{m}\,dt,\mathbf{p}+\mathbf{F}\,dt,t+dt)\,d\mathbf{x}\,d\mathbf{p} =
f(\mathbf{x},\mathbf{p},t)\,d\mathbf{x}\,d\mathbf{p},

because particles at \mathbf{x} with momentum \mathbf{p} at time t, will (all) be at \mathbf{x}+\frac{\mathbf{p}}{m}dt with momentum \mathbf{p} + \mathbf{F}dt at time t + dt.

However, since collisions do occur, the particle density in the phase-space volume dx dp changes.


f(\mathbf{x}+\frac{\mathbf{p}}{m}dt,\mathbf{p} + \mathbf{F}dt,t+dt) \,d\mathbf{x}\,d\mathbf{p}
- f(\mathbf{x},\mathbf{p},t)d\mathbf{x}\,d\mathbf{p} =
\left. \frac{\partial f(\mathbf{x},\mathbf{p},t)}{\partial t} \right|_{\mathrm{coll}} \, d\mathbf{x} \, d\mathbf{p} \, dt

Dividing the equation by dx dp dt and taking the limit, we can get the Boltzmann equation


\frac{\partial f}{\partial t}
+ \frac{\partial f}{\partial \mathbf{x}} \cdot \frac{\mathbf{p}}{m}
+ \frac{\partial f}{\partial \mathbf{p}} \cdot \mathbf{F}
= \left. \frac{\partial f}{\partial t} \right|_{\mathrm{coll}}.

F(x, t) is the force field acting on the particles in the fluid, and m is the mass of the particles. The term on the right hand side is added to describe the effect of collisions between particles; if it is zero then the particles do not collide. The collisionless Boltzmann equation is often mistakenly called the Liouville equation (the Liouville Equation is an N-particle equation).

Molecular chaos and the collision term (Stosszahl Ansatz)

The above Boltzmann equation is of little practical use as it leaves the collision term unspecified. A key insight applied by Boltzmann was to determine the collision term resulting solely from two-body collisions between particles that are assumed to be uncorrelated prior to the collision. This assumption was referred to by Boltzmann as the 'Stosszahl Ansatz', and is also known as the 'molecular chaos assumption'. Under this assumption the collision term can be written as a momentum-space integral over the product of one-particle distribution functions:


 \left. \frac{\partial f}{\partial t} \right|_{\mathrm{coll}} = \int\!\!\! \int g(\mathbf{p-p'},\mathbf{q}) \left[f(\mathbf{x},\mathbf{p+q},t) f(\mathbf{x},\mathbf{p'-q},t) - f(\mathbf{x},\mathbf{p},t) f(\mathbf{x},\mathbf{p'},t)\right]\,d\mathbf{p'}\,d\mathbf{q}.

Extensions and applications

It is also possible to write down relativistic Boltzmann equations for systems in which a number of particle species can collide and produce different species. This is how the formation of the light elements in big bang nucleosynthesis is calculated. The Boltzmann equation is also often used in dynamics, especially galactic dynamics. A galaxy, under certain assumptions, may be approximated as a continuous fluid; its mass distribution is then represented by f; in galaxies, physical collisions between the stars are very rare, and the effect of gravitational collisions can be neglected for times far longer than the age of the universe.

In Hamiltonian mechanics, the Boltzmann equation is often written more generally as

\hat{\mathbf{L}}[f]=\mathbf{C}[f], \,

where L is the Liouville operator describing the evolution of a phase space volume and C is the collision operator. The non-relativistic form of L is

\hat{\mathbf{L}}_\mathrm{NR} = \frac{\partial}{\partial t} + \frac{\mathbf{p}}{m} \cdot \nabla_\mathbf{x}+\mathbf{F}\cdot\nabla_\mathbf{p},

and the generalization to (general) relativity is

\hat{\mathbf{L}}_\mathrm{GR}=p^\alpha\frac{\partial}{\partial x^\alpha}-\Gamma^\alpha_{\beta\gamma}p^\beta p^\gamma\frac{\partial}{\partial p^\alpha},

where Γ is the Christoffel symbol.

See also

Notes

  1. ^ DiPerna, R. J.; Lions, P.-L. (1989). "On the Cauchy problem for Boltzmann equations: global existence and weak stability". Ann. of Math. (2) 130: 321–366. 
  2. ^ Philip T. Gressman and Robert M. Strain (2010). "Global classical solutions of the Boltzmann equation with long-range interactions". Proceedings of the National Academy of Sciences 107 (13): 5744–5749. Bibcode 2010PNAS..107.5744G. doi:10.1073/pnas.1001185107. 
  3. ^ Huang, Kerson (1987). Statistical Mechanics (Second ed.). New York: Wiley. p. 53. ISBN 0471815187. 

References

  • Arkeryd, Leif (1972). "On the Boltzmann equation part II: The full initial value problem". Arch. Rational Mech. Anal. 45: 17–34. Bibcode 1972ArRMA..45...17A. doi:10.1007/BF00253393. 
  • Arkeryd, Leif (1972). "On the Boltzmann equation part I: Existence". Arch. Rational Mech. Anal. 45: 1–16. Bibcode 1972ArRMA..45....1A. doi:10.1007/BF00253392. 
  • DiPerna, R. J.; Lions, P.-L. (1989). "On the Cauchy problem for Boltzmann equations: global existence and weak stability". Ann. of Math. (2) 130: 321–366. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Poisson-Boltzmann equation — The Poisson Boltzmann equation is a differential equation that describes electrostatic interactions between molecules in ionic solutions. It is the mathematical base for the Gouy Chapman double layer (interfacial) theory; first proposed by Gouy… …   Wikipedia

  • Equation de Boltzmann — Équation de Boltzmann L équation de Boltzmann (1872) est une équation intégro différentielle de la théorie cinétique qui décrit l évolution d un gaz peu dense hors d équilibre. Elle permet notamment de démontrer le théorème H, et d étudier la… …   Wikipédia en Français

  • Équation de boltzmann — L équation de Boltzmann (1872) est une équation intégro différentielle de la théorie cinétique qui décrit l évolution d un gaz peu dense hors d équilibre. Elle permet notamment de démontrer le théorème H, et d étudier la relaxation du gaz d un… …   Wikipédia en Français

  • Équation de Boltzmann — L équation de Boltzmann (1872) est une équation intégro différentielle de la théorie cinétique qui décrit l évolution d un gaz peu dense hors d équilibre. Elle permet notamment de démontrer le théorème H, et d étudier la relaxation du gaz d un… …   Wikipédia en Français

  • Boltzmann's entropy formula — In statistical thermodynamics, Boltzmann s equation is a probability equation relating the entropy S of an ideal gas to the quantity W , which is the number of microstates corresponding to a given macrostate::S = k log W ! (1)where k is Boltzmann …   Wikipedia

  • Equation de Poisson-Boltzmann — Équation de Poisson Boltzmann Pour les articles homonymes, voir Poisson (homonymie). L équation de Poisson Boltzmann est une équation qui apparaît dans la théorie de Debye Huckel des solutions ioniques. Cette équation permet de calculer le… …   Wikipédia en Français

  • Équation de poisson-boltzmann — Pour les articles homonymes, voir Poisson (homonymie). L équation de Poisson Boltzmann est une équation qui apparaît dans la théorie de Debye Huckel des solutions ioniques. Cette équation permet de calculer le potentiel électrostatique créé par… …   Wikipédia en Français

  • Equation de Poisson — Équation de Poisson Pour les articles homonymes, voir Poisson (homonymie). Articles d analyse vectorielle …   Wikipédia en Français

  • Équation de poisson — Pour les articles homonymes, voir Poisson (homonymie). Articles d analyse vectorielle …   Wikipédia en Français

  • Equation d'Eyring — Équation d Eyring L équation d Eyring, aussi appelée équation d Eyring Polanyi en cinétique chimique, relie la vitesse de réaction à la température. Elle a été établie quasi simultanément en 1935 par Henry Eyring, M.G. Evans et Michael Polanyi.… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”