1/4 + 1/16 + 1/64 + 1/256 + · · ·

1/4 + 1/16 + 1/64 + 1/256 + · · ·

In mathematics, the infinite series 1/4 + 1/16 + 1/64 + 1/256 + · · · is an example of one of the first infinite series to be summed in the history of mathematics; it was used by Archimedes circa 250–200 BC.Shawyer and Watson p. 3.] Its sum is 1/3. More generally, for any "a", the infinite geometric series whose first term is "a" and whose common ratio is 1/4 is convergent with the sum:a+frac{a}{4}+frac{a}{4^2}+frac{a}{4^3}+cdots = frac43 a.

Visual demonstrations

The series 1/4 + 1/16 + 1/64 + 1/256 + · · · lends itself to some particularly simple visual demonstrations because a square and a triangle both divide into four similar pieces, each of which contains 1/4 the area of the original.

In the figure on the left,Nelsen and Alsina p. 74.] Ajose and Nelson.] if the large square is taken to have area 1, then the largest black square has area (1/2)(1/2) = 1/4. Likewise, the second largest black square has area 1/16, and the third largest black square has area 1/64. The area taken up by all of the black squares together is therefore 1/4 + 1/16 + 1/64 + · · ·, and this is also the area taken up by the gray squares and the white squares. Since these three areas cover the unit square, the figure demonstrates that:3left(frac14+frac{1}{4^2}+frac{1}{4^3}+frac{1}{4^4}+cdots ight) = 1.

Archimedes' own illustration, adapted at top, [Heath p.250] was slightly different, being closer to the equation

:frac34+frac{3}{4^2}+frac{3}{4^3}+frac{3}{4^4}+cdots = 1.See below for details on Archimedes' interpretation.

The same geometric strategy also works for triangles, as in the figure on the right:Stein p. 46.] Mabry.] if the large triangle has area 1, then the largest black triangle has area 1/4, and so on. The figure as a whole has a self-similarity between the large triangle and its upper sub-triangle. A related construction making the figure similar to all three of its corner pieces produces the Sierpinski triangle. [Nelson and Alsina p.56]

Archimedes

Archimedes encounters the series in his work "Quadrature of the Parabola". He is finding the area inside a parabola by the method of exhaustion, and he gets a series of triangles; each stage of the construction adds an area 1/4 times the area of the previous stage. His desired result in that the total area is 4/3 the area of the first stage. To get there, he takes a break from parabolas to introduce an algebraic lemma:

Proposition 23. Given a series of areas "A", "B", "C", "D", … , "Z", of which "A" is the greatest, and each is equal to four times the next in order, then [This is a quotation from Heath's English translation (p.249).] :A + B + C + D + cdots + Z + frac13 Z = frac43 A.

Archimedes proves the proposition by first calculating:egin{array}{rcl}displaystyle B+C+cdots+Z+frac{B}{3}+frac{C}{3}+cdots+frac{Z}{3} & = &displaystyle frac{4B}{3}+frac{4C}{3}+cdots+frac{4Z}{3} \ [1em] & = &displaystyle frac13(A+B+cdots+Y).end{array}On the other hand,:frac{B}{3}+frac{C}{3}+cdots+frac{Y}{3} = frac13(B+C+cdots+Y).

Subtracting this equation from the previous equation yields:B+C+cdots+Z+frac{Z}{3} = frac13 Aand adding "A" to both sides gives the desired result. [This presentation is a shortened version of Heath p.250.]

Today, a more standard phrasing of Archimedes' proposition is that the partial sums of the series nowrap|1 + 1/4 + 1/16 + · · · are::1+frac{1}{4}+frac{1}{4^2}+cdots+frac{1}{4^n}=frac{1-left(frac14 ight)^{n+1{1-frac14}.

This form can be proved by multiplying both sides by 1 − 1/4 and observing that most of the terms on the left-hand side of the equation cancel in pairs. The same strategy works for any finite geometric series.

The limit

Archimedes' Proposition 24 applies the finite (but indeterminate) sum in Proposition 23 to the area inside a parabola by a double "reductio ad absurdum". He does not "quite" [Modern authors differ on how appropriate it is to say that Archimedes summed the infinite series. For example, Shawyer and Watson (p.3) simply say he did; Swain and Dence say that "Archimedes applied an indirect limiting process"; and Stein (p.45) stops short with the finite sums.] take the limit of the above partial sums, but in modern calculus this step is easy enough::lim_{n oinfty} frac{1-left(frac14 ight)^{n+1{1-frac14} = frac{1}{1-frac14} = frac43.

Since the sum of an infinite series is defined as the limit of its partial sums,:1+frac14+frac{1}{4^2}+frac{1}{4^3}+cdots = frac43.

Notes

References


*cite journal |title=Proof without Words: Geometric Series |author=Ajose, Sunday and Roger Nelsen |journal=Mathematics Magazine |volume=67 |issue=3 |month=June |year=1994 |pages=230 |url=http://links.jstor.org/sici?sici=0025-570X%28199406%2967%3A3%3C230%3APWWGS%3E2.0.CO%3B2-A
*cite book |first=T. L. |last=Heath |title=The Works of Archimedes |year=1953 |origyear=1897 |publisher=Cambridge UP Page images at cite web |first=Bill |last=Casselman |title=Archimedes' quadrature of the parabola |url=http://www.math.ubc.ca/~cass/archimedes/parabola.html |accessdate=2007-03-22 HTML with figures and commentary at cite web |first=Daniel E. |last=Otero |year=2002 |title=Archimedes of Syracuse |url=http://www.cs.xu.edu/math/math147/02f/archimedes/archpartext.html |accessdate=2007-03-22
*cite journal |title=Proof without Words: 14 + (14)2 + (14)3 + · · · = 13 |first=Rick |last=Mabry |journal=Mathematics Magazine |volume=72 |issue=1 |month=February |year=1999 |pages=63 |url=http://links.jstor.org/sici?sici=0025-570X%28199902%2972%3A1%3C63%3APWW%3C%3E2.0.CO%3B2-O
*cite book |author=Nelsen, Roger B. and Claudi Alsina |title=Math Made Visual: Creating Images for Understanding Mathematics |year=2006 |publisher=MAA |id=ISBN 0883857464
*cite book |author=Shawyer, Bruce and Bruce Watson |title=Borel's Methods of Summability: Theory and Applications |publisher=Oxford UP |year=1994 |id=ISBN 0-19-853585-6
*cite book |first=Sherman K. |last=Stein |title=Archimedes: What Did He Do Besides Cry Eureka? |publisher=MAA |year=1999 |id=ISBN 0883857189
*cite journal |author=Swain, Gordon and Thomas Dence |title=Archimedes' Quadrature of the Parabola Revisited |journal=Mathematics Magazine |volume=71 |issue=2 |month=April |year=1998 |pages=123–30 |url=http://links.jstor.org/sici?sici=0025-570X%28199804%2971%3A2%3C123%3AAQOTPR%3E2.0.CO%3B2-Q

Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • 256. Infanterie-Division (Wehrmacht) — 256. Infanterie Division Aktiv 26. August 1939–21. Juli. 1944 aufgelöst Land Deutsches Reich NS & …   Deutsch Wikipedia

  • 256 (число) — 256 двести пятьдесят шесть 253 · 254 · 255 · 256 · 257 · 258 · 259 Факторизация: Римская запись: CCLVI Двоичное: 100000000 Восьмеричное: 400 …   Википедия

  • 256 av. J.-C. — 256 Années : 259 258 257   256  255 254 253 Décennies : 280 270 260   250  240 230 220 Siècles : IVe siècle …   Wikipédia en Français

  • (256) Вальпурга — Открытие Первооткрыватель Иоганн Пализа Место обнаружения Вена Дата обнаружения 3 апреля 1886 Эпоним Святая Вальпурга  …   Википедия

  • (256) walpurga — 256 Walpurga pas de photo Caractéristiques orbitales Époque 18 août 2005 (JJ 2453600.5) Demi grand axe 448,687×106 km (2,999 ua) Aphélie …   Wikipédia en Français

  • 256 Walpurga — (256) Walpurga 256 Walpurga pas de photo Caractéristiques orbitales Époque 18 août 2005 (JJ 2453600.5) Demi grand axe 448,687×106 km (2,999 ua) Aphélie …   Wikipédia en Français

  • (256) Walpurga — 256 Walpurga Caractéristiques orbitales Époque 18 août 2005 (JJ 2453600.5) Demi grand axe 448,687×106 km (2,999 ua) Aphélie 480,615×106 km (3,213 ua) Périhélie …   Wikipédia en Français

  • 256 AH — is a year in the Islamic calendar that corresponds to 869 ndash; 870 CE.yearbox width = 500 in?= cp=2nd century AH c=3rd century AH cf=4th century AH| yp1=X AH yp2=X AH yp3=X AH year=X AH ya1=X AH ya2=X AH ya3=X AH dp3=X0s AH dp2=X0s AH dp1=X0s… …   Wikipedia

  • 256 (number) — Number|number = 256 range = 0 1000 cardinal = two hundred [and] fifty six ordinal = th ordinal text = numeral = factorization = 256 = 2^8 prime = divisor = roman = CCLVI unicode = greek prefix = latin prefix = bin = 100000000 oct = 400 duo = 194… …   Wikipedia

  • 256 — Années : 253 254 255  256  257 258 259 Décennies : 220 230 240  250  260 270 280 Siècles : IIe siècle  IIIe siècle …   Wikipédia en Français

  • 256 (nombre) — Cet article est relatif au nombre 256. Pour l année, voir 256. 256 Cardinal deux cent cinquante six Ordinal deux cent cinquante sixième 256e Adverbe …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”