Model predictive control

Model predictive control

Model Predictive Control, or MPC, is an advanced method of process control that has been in use in the process industries such as chemical plants and oil refineries since the 1980s. Model predictive controllers rely on dynamic models of the process, most often linear empirical models obtained by system identification.

Contents

Overview

The models used in MPC are generally intended to represent the behavior of complex dynamical systems. The additional complexity of the MPC control algorithm is not generally needed to provide adequate control of simple systems, which are often controlled well by generic PID controllers. Common dynamic characteristics that are difficult for PID controllers include large time delays and high-order dynamics.

MPC models predict the change in the dependent variables of the modeled system that will be caused by changes in the independent variables. In a chemical process, independent variables that can be adjusted by the controller are often either the setpoints of regulatory PID controllers (pressure, flow, temperature, etc.) or the final control element (valves, dampers, etc.). Independent variables that cannot be adjusted by the controller are used as disturbances. Dependent variables in these processes are other measurements that represent either control objectives or process constraints.

MPC uses the current plant measurements, the current dynamic state of the process, the MPC models, and the process variable targets and limits to calculate future changes in the independent variables. These changes are calculated to hold the dependent variables close to target while honoring constraints on both independent and dependent variables. The MPC typically sends out only the first change in each independent variable to be implemented, and repeats the calculation when the next change is required.

While many real processes are not linear, they can often be considered to be approximately linear over a small operating range. Linear MPC approaches are used in the majority of applications with the feedback mechanism of the MPC compensating for prediction errors due to structural mismatch between the model and the process. In model predictive controllers that consist only of linear models, the superposition principle of linear algebra enables the effect of changes in multiple independent variables to be added together to predict the response of the dependent variables. This simplifies the control problem to a series of direct matrix algebra calculations that are fast and robust.

When linear models are not sufficiently accurate to represent the real process nonlinearities, several approaches can be used. In some cases, the process variables can be transformed before and/or after the linear MPC model to reduce the nonlinearity. The process can be controlled with nonlinear MPC that uses a nonlinear model directly in the control application. The nonlinear model may be in the form of an empirical data fit (e.g. artificial neural networks) or a high-fidelity dynamic model based on fundamental mass and energy balances. The nonlinear model may be linearized to derive a Kalman filter or specify a model for linear MPC.

Theory behind MPC

A discrete MPC scheme.

MPC is based on iterative, finite horizon optimization of a plant model. At time t the current plant state is sampled and a cost minimizing control strategy is computed (via a numerical minimization algorithm) for a relatively short time horizon in the future: [t,t + T]. Specifically, an online or on-the-fly calculation is used to explore state trajectories that emanate from the current state and find (via the solution of Euler-Lagrange equations) a cost-minimizing control strategy until time t + T. Only the first step of the control strategy is implemented, then the plant state is sampled again and the calculations are repeated starting from the now current state, yielding a new control and new predicted state path. The prediction horizon keeps being shifted forward and for this reason MPC is also called receding horizon control. Although this approach is not optimal, in practice it has given very good results. Much academic research has been done to find fast methods of solution of Euler-Lagrange type equations, to understand the global stability properties of MPC's local optimization, and in general to improve the MPC method. To some extent the theoreticians have been trying to catch up with the control engineers when it comes to MPC.[1]

Principles of MPC

Model Predictive Control (MPC) is a multivariable control algorithm that uses:

  • an internal dynamic model of the process
  • a history of past control moves and
  • an optimization cost function J over the receding prediction horizon,

to calculate the optimum control moves.

The optimization cost function is given by:

J=\sum_{i=1}^N w_{x_i} (r_i-x_i)^2 + \sum_{i=1}^N w_{u_i} {\Delta u_i}^2


without violating constraints (low/high limits)

With:

xi = i -th controlled variable (e.g. measured temperature)

ri = i -th reference variable (e.g. required temperature)

ui = i -th manipulated variable (e.g. control valve)

w_{x_i} = weighting coefficient reflecting the relative importance of xi

w_{u_i} = weighting coefficient penalizing relative big changes in ui

etc.

Nonlinear MPC

Nonlinear Model Predictive Control, or NMPC, is a variant of model predictive control (MPC) that is characterized by the use of nonlinear system models in the prediction. As in linear MPC, NMPC requires the iterative solution of optimal control problems on a finite prediction horizon. While these problems are convex in linear MPC, in nonlinear MPC they are not convex anymore. This poses challenges for both, NMPC stability theory and numerical solution.[2]

The numerical solution of the NMPC optimal control problems is typically based on direct optimal control methods using Newton-type optimization schemes, in one of the variants: direct single shooting, direct multiple shooting methods, or direct collocation. NMPC algorithms typically exploit the fact that consecutive optimal control problems are similar to each other.

This allows to initialize the Newton-type solution procedure efficiently by a suitably shifted guess from the previously computed optimal solution, saving considerable amounts of computation time. The similarity of subsequent problems is even further exploited by path following algorithms (or "real-time iterations") that never attempt to iterate any optimization problem to convergence, but instead only take one iteration towards the solution of the most current NMPC problem, before proceeding to the next one, which is suitably initialized.

While NMPC applications have in the past been mostly used in the process and chemical industries with comparatively slow sampling rates, NMPC is more and more being applied to applications with high sampling rates, e.g., in the automotive industry.

Commercially available MPC software

Commercial MPC packages are available and typically contain tools for model identification and analysis, controller design and tuning, as well as controller performance evaluation.

A survey of commercially available packages has been provided by S.J. Qin and T.A. Badgwell in Control Engineering Practice 11 (2003) 733–764 [1].

See also

References

  1. ^ Michael Nikolaou, Model predictive controllers: A critical synthesis of theory and industrial needs, Advances in Chemical Engineering, Academic Press, 2001, Volume 26, Pages 131-204
  2. ^ An excellent overview of the state of the art (in 2008) is given in the proceedings of the two large international workshops on NMPC, by Zheng and Allgower (2000) and by Findeisen, Allgöwer, and Biegler (2006).

Further reading

  • Kwon, W. H.; Bruckstein, Kailath (1983). "Stabilizing state feedback design via the moving horizon method". International Journal of Control 37 (3): pp.631–643. doi:10.1080/00207178308932998. 
  • Garcia, C; Prett, Morari (1989). "Model predictive control: theory and practice". Automatica 25 (3): pp.335–348. doi:10.1016/0005-1098(89)90002-2. 
  • Grüne, L; Pannek (2009). "Practical NMPC suboptimality estimates along trajectories". System & Control Letters 58 (3): pp.161–168. doi:10.1016/j.sysconle.2008.10.012. 
  • Mayne, D.Q.; Michalska (1990). "Receding horizon control of nonlinear systems". IEEE Transactions on Automatic Control 35 (7): pp.814–824. doi:10.1109/9.57020. 
  • Mayne, D; Rawlings, Rao, Scokaert (2000). "Constrained model predictive control: stability and optimality". Automatica 36 (6): pp.789–814. doi:10.1016/S0005-1098(99)00214-9. 
  • Allgöwer; Zheng (2000). Nonlinear model predictive control. Progress in Systems Theory. 26. Birkhauser. 
  • Camacho; Bordons (2004). Model predictive control. Springer Verlag. 
  • Findeisen; Allgöwer, Biegler (2006). Assessment and Future Directions of Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences. 26. Springer. 
  • Diehl, M; Bock, Schlöder, Findeisen, Nagy, Allgöwer (2002). "Real-time optimization and Nonlinear Model Predictive Control of Processes governed by differential-algebraic equations". Journal of Process Control 12 (4): pp.577–585. doi:10.1016/S0959-1524(01)00023-3. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Model Predictive Control — Die Modellprädiktive Regelung, zumeist Model Predictive Control (MPC) oder auch Receding Horizon Control (RHC) genannt, ist eine moderne Methode zur prädiktiven Regelung von komplexen Prozessen. Inhaltsverzeichnis 1 Funktionsweise 2… …   Deutsch Wikipedia

  • Control reconfiguration — is an active approach in control theory to achieve fault tolerant control for dynamic systems [1]. It is used when severe faults, such as actuator or sensor outages, cause a break up of the control loop, which must be restructured to prevent… …   Wikipedia

  • Control engineering — Control systems play a critical role in space flight Control engineering or Control systems engineering is the engineering discipline that applies control theory to design systems with predictable behaviors. The practice uses sensors to measure… …   Wikipedia

  • Control theory — For control theory in psychology and sociology, see control theory (sociology) and Perceptual Control Theory. The concept of the feedback loop to control the dynamic behavior of the system: this is negative feedback, because the sensed value is… …   Wikipedia

  • Control system — For other uses, see Control system (disambiguation). A control system is a device, or set of devices to manage, command, direct or regulate the behavior of other devices or system. There are two common classes of control systems, with many… …   Wikipedia

  • Predictive analytics — encompasses a variety of techniques from statistics and data mining that analyze current and historical data to make predictions about future events. Such predictions rarely take the form of absolute statements, and are more likely to be… …   Wikipedia

  • Online model — An online model is a mathematical model which tracks and mirrors a plant or process in real time, and which is implemented with some form of automatic adaptivity to compensate for model degredation over time. Contents 1 Relationship to other… …   Wikipedia

  • Process control — is a statistics and engineering discipline that deals with architectures, mechanisms, and algorithms for controlling the output of a specific process. See also control theory.For example, heating up the temperature in a room is a process that has …   Wikipedia

  • Advanced process control — In control theory Advanced process control (APC) is a broad term composed of different kinds of process control tools, often used for solving multivariable control problems or discrete control problem. Overview Advanced process control is… …   Wikipedia

  • Predictive dialer — A predictive dialer is a computerized system that automatically dials batches of telephone numbers for connection to agents assigned to sales or other campaigns. Predictive dialers are widely used in call centers.HistoryThe autodialer preceded… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”