Projective differential geometry

Projective differential geometry

In mathematics, projective differential geometry is the study of differential geometry, from the point of view of properties that are invariant under the projective group. This is a mixture of attitudes from Riemannian geometry, and the Erlangen program.

The area was much studied by mathematicians from around 1890 for a generation (by J. G. Darboux, George Henri Halphen, Ernest Julius Wilczynski, E. Bompiani, G. Fubini, Eduard ech, amongst others), without a comprehensive theory of differential invariants emerging. Élie Cartan formulated the idea of a general projective connection, as part of his method of moving frames; abstractly speaking, this is the level of generality at which the Erlangen program can be reconciled with differential geometry, while it also develops the oldest part of the theory (for the projective line), namely the Schwarzian derivative.

Further work from the 1930s onwards was carried out by J. Kanitani, Shiing-Shen Chern, A. P. Norden, G. Bol, S. P. Finikov and G. F. Laptev. Even the basic results on osculation of curves, a manifestly projective-invariant topic, lack any comprehensive theory. The ideas of projective differential geometry recur in mathematics and its applications, but the formulations given are still rooted in the language of the early twentieth century.

References

* Ernest Julius Wilczynski " [http://www.archive.org/details/projectivediffer00wilcuoft Projective differential geometry of curves and ruled surfaces] " (Leipzig: B.G. Teubner,1906)


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Differential geometry — A triangle immersed in a saddle shape plane (a hyperbolic paraboloid), as well as two diverging ultraparallel lines. Differential geometry is a mathematical discipline that uses the techniques of differential and integral calculus, as well as… …   Wikipedia

  • Affine differential geometry — Affine differential geometry, as its name suggests, is a type of differential geometry. The basic difference between affine and Riemannian differential geometry is that in the affine case we introduce volume forms over a manifold instead of… …   Wikipedia

  • Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… …   Wikipedia

  • List of differential geometry topics — This is a list of differential geometry topics. See also glossary of differential and metric geometry and list of Lie group topics. Contents 1 Differential geometry of curves and surfaces 1.1 Differential geometry of curves 1.2 Differential… …   Wikipedia

  • Differential invariant — In mathematics, a differential invariant is an invariant for the action of a Lie group on a space that involves the derivatives of graphs of functions in the space. Differential invariants are fundamental in projective differential geometry, and… …   Wikipedia

  • Geometry — (Greek γεωμετρία ; geo = earth, metria = measure) is a part of mathematics concerned with questions of size, shape, and relative position of figures and with properties of space. Geometry is one of the oldest sciences. Initially a body of… …   Wikipedia

  • geometry — /jee om i tree/, n. 1. the branch of mathematics that deals with the deduction of the properties, measurement, and relationships of points, lines, angles, and figures in space from their defining conditions by means of certain assumed properties… …   Universalium

  • Projective space — In mathematics a projective space is a set of elements constructed from a vector space such that a distinct element of the projective space consists of all non zero vectors which are equal up to a multiplication by a non zero scalar. A formal… …   Wikipedia

  • Projective connection — In differential geometry, a projective connection is a type of Cartan connection on a differentiable manifold. The structure of a projective connection is modeled on the geometry of projective space, rather than the affine space corresponding to… …   Wikipedia

  • Differential form — In the mathematical fields of differential geometry and tensor calculus, differential forms are an approach to multivariable calculus that is independent of coordinates. Differential forms provide a better[further explanation needed] definition… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”