Real gas

Real gas

Real gases – as opposed to a perfect or ideal gas – exhibit properties that cannot be explained entirely using the ideal gas law. To understand the behaviour of real gases, the following must be taken into account:

For most applications, such a detailed analysis is unnecessary, and the ideal gas approximation can be used with reasonable accuracy. On the other hand, real-gas models have to be used near the condensation point of gases, near critical points, at very high pressures, and in other less usual cases.

Contents

Models

Isotherms of real gas (sketchy)

Dark blue curves – isotherms below the critical temperature. Green sections – metastable states.

The section to the left of point F – normal liquid.
Point F – boiling point.
Line FG – equilibrium of liquid and gaseous phases.
Section FA – superheated liquid.
Section F′A – stretched liquid (p<0).
Section AC – analytic continuation of isotherm, physically impossible.
Section CG – supercooled vapor.
Point G – dew point.
The plot to the right of point G – normal gas.
Areas FAB and GCB are equal.

Red curve – Critical isotherm.
Point K – critical point.

Light blue curves – supercritical isotherms

van der Waals model

Real gases are often modeled by taking into account their molar weight and molar volume

RT=\left(P+\frac{a}{V_m^2}\right)(V_m-b)

Where P is the pressure, T is the temperature, R the ideal gas constant, and Vm the molar volume. a and b are parameters that are determined empirically for each gas, but are sometimes estimated from their critical temperature (Tc) and critical pressure (Pc) using these relations:

a=\frac{27R^2T_c^2}{64P_c}

b=\frac{RT_c}{8P_c}

Redlich–Kwong model

The Redlich–Kwong equation is another two-parameters equation that is used to model real gases. It is almost always more accurate than the van der Waals equation, and often more accurate than some equations with more than two parameters. The equation is

RT=P(V_m-b)+\frac{a}{V_m(V_m+b)T^\frac{1}{2}}(V_m-b)

where a and b two empirical parameters that are not the same parameters as in the van der Waals equation. These parameters can be determined:

a=0.4275\frac{R^2T_c^{2.5}}{P_c}

b=0.0867\frac{RT_c}{P_c}

Berthelot and modified Berthelot model

The Berthelot equation (named after D. Berthelot[1] is very rarely used,

P=\frac{RT}{V_m-b}-\frac{a}{TV_m^2}

but the modified version is somewhat more accurate

P=\frac{RT}{V_m}\left[1+\frac{9P/P_c}{128T/T_c}\left(1-\frac{6}{(T/T_c)^2}\right)\right]

Dieterici model

This model (named after C. Dieterici[2]) fell out of usage in recent years

P=RT\frac{\exp{(\frac{-a}{V_mRT})}}{V_m-b}.

Clausius model

The Clausius equation (named after Rudolf Clausius) is a very simple three-parameter equation used to model gases.

RT=\left(P+\frac{a}{T(V_m+c)^2}\right)(V_m-b)

where

a=\frac{27R^2T_c^3}{64P_c}

b=V_c-\frac{RT_c}{4P_c}

c=\frac{3RT_c}{8P_c}-V_c

where Vc is critical volume.

Virial model

The Virial equation derives from a perturbative treatment of statistical mechanics.

PV_m=RT\left(1+\frac{B(T)}{V_m}+\frac{C(T)}{V_m^2}+\frac{D(T)}{V_m^3}+...\right)

or alternatively

PV_m=RT\left(1+\frac{B^\prime(T)}{P}+\frac{C^\prime(T)}{P^2}+\frac{D^\prime(T)}{P^3}+...\right)

where A, B, C, A′, B′, and C′ are temperature dependent constants.

Peng–Robinson model

This two parameter equation (named after D.-Y. Peng and D. B. Robinson[3]) has the interesting property being useful in modeling some liquids as well as real gases.

P=\frac{RT}{V_m-b}-\frac{a(T)}{V_m(V_m+b)+b(Vm-b)}

Wohl model

The Wohl equation (named after A. Wohl[4]) is formulated in terms of critical values, making it useful when real gas constants are not available.

RT=\left(P+\frac{a}{TV_m(V_m-b)}-\frac{c}{T^2V_m^3}\right)(V_m-b)

where

a=6P_cT_cV_c^2

b=\frac{V_c}{4}

c=4P_cT_c^2V_c^3.

Beattie–Bridgeman model

The Beattie–Bridgeman equation (named after James A. Beattie and Oscar C. Bridgeman[5])

P=RTd+(BRT-A-\frac{Rc}{T^2})d^2+(-BbRT+Aa-\frac{RBc}{T^2})d^3+\frac{RBbcd^4}{T^2}

where d is the molal density and a, b, c, A, and B are empirical parameters.

Benedict–Webb–Rubin model

The BWR equation, sometimes referred to as the BWRS equation,

P=RTd+d^2\left(RT(B+bd)-(A+ad-a{\alpha}d^4)-\frac{1}{T^2}[C-cd(1+{\gamma}d^2)\exp(-{\gamma}d^2)]\right)

where d is the molal density and where a, b, c, A, B, C, α, and γ are empirical constants.

See also

References

  1. ^ D. Berthelot in Travaux et Mémoires du Bureau international des Poids et Mesures – Tome XIII (Paris: Gauthier-Villars, 1907)
  2. ^ C. Dieterici, Ann. Phys. Chem. Wiedemanns Ann. 69, 685 (1899)
  3. ^ D.-Y. Peng and D.B. Robinson, "A New Two-Constant Equaiton of State," Ind. Eng. Chem. Fund., 15, 59 (1976)
  4. ^ A. Wohl "Investigation of the condition equation", Zeitschrift für Physikalische Chemie (Leipzig) 87 pp. 1–39 (1914)
  5. ^ James A. Beattie and Oscar C. Bridgeman "A NEW EQUATION OF STATE FOR FLUIDS. I. APPLICATION TO GASEOUS ETHYL ETHER AND CARBON DIOXIDE", Journal of the American Chemical Society 49 pp. 1665 – 1667 (1927)

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • real gas — realiosios dujos statusas T sritis fizika atitikmenys: angl. actual gas; real gas vok. reelles Gas, n; wirkliches Gas, n rus. реальный газ, m pranc. gaz imparfait, m; gaz réel, m …   Fizikos terminų žodynas

  • real gas — realiosios dujos statusas T sritis Standartizacija ir metrologija apibrėžtis Dujos, kurių molekulės sąveikauja tarpusavyje. atitikmenys: angl. real gas vok. reelles Gas, n; wirkliches Gas, n rus. реальный газ, m pranc. gaz imparfait, m; gaz réel …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • real gas — realiosios dujos statusas T sritis Energetika apibrėžtis Dujos, kurių molekulės turi tūrį ir tarp jų veikia molekulinės jėgos. atitikmenys: angl. real gas vok. reales Gas, n rus. реальный газ, m pranc. gaz réel, m …   Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

  • real gas — realiosios dujos statusas T sritis chemija apibrėžtis Dujos, kurių savybės neatitinka idealiųjų dujų savybių. atitikmenys: angl. real gas rus. реальный газ …   Chemijos terminų aiškinamasis žodynas

  • Gas — This article is about the physical properties of gas as a state of matter. For the uses of gases, and other meanings, see Gas (disambiguation). Ga …   Wikipedia

  • Gas laws — This articles outlines the historical development of the laws describing ideal gases. For a detailed description of the ideal gas laws and their further development, see Ideal gas, Ideal gas law and Gas The gas laws are a set of laws that… …   Wikipedia

  • real — I. adjective Etymology: Middle English, real, relating to things (in law), from Anglo French, from Medieval Latin & Late Latin; Medieval Latin realis relating to things (in law), from Late Latin, real, from Latin res thing, fact; akin to Sanskrit …   New Collegiate Dictionary

  • gas — 1 noun plural gases also gasses 1 (C, U) a substance like air, which is not solid or liquid, and usually cannot be seen: hydrogen gas | a gas cylinder (=for storing gas) 2 (U) a substance of this type which is burnt for heating or cooking: a gas… …   Longman dictionary of contemporary English

  • gas — I n A great time, something hilarious. The party last night was a real gas! ). 1940s II n A joke. They played some kind of gas on her and made her mad. 1910s III n Empty, boastful talk. Don t listen to Tommy; he s full of gas. 1840s …   Historical dictionary of American slang

  • Real Club Recreativo de Huelva — Saltar a navegación, búsqueda Recreativo Nombre completo Real Club Recreativo de Huelva SAD Apodo(s) Recre, Decano Fundación 1889 (119 años) …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”