Electro-gyration

Electro-gyration

The electrogyration effect is the spatial dispersion phenomenon, that consists in the change of optical activity (gyration) of crystals by a constant or time-varying electric field. Being a spatial dispersion effect, the induced optical activity exhibit different behavior under the operation of wave vector reversal, when compare with the Faraday effect: the optical activity increment associated with the electrogyration effect changes its sign under that operation, contrary to the Faraday effect.

The electrogyration effect linear in the electric field occurs in crystals of all point groups of symmetry except for the three cubic – m3m, 432 and overline{4}3m, . The effect proportional to the square of the electric field can exist only in crystals belonging to acentric point groups of symmetry.

The historical background of discovery of electrogyration

The changes in the optical activity sign induced by the external electric field have been observed for the first time in ferroelectric crystals LiH3(SeO4)2 by H. Futama and R. Pepinsky in 1961 [ [http://www.ipap.jp/jpsj/current/index.htm] Futama H. and Pepinsky R. (1962) "Optical activity in ferroelectric LiH3(SeO3)2", "J. Phys. Soc. Jap." 17, 725] , while switching enantiomorphous ferroelectric domains (the change in the point symmetry group of the crystal being 2/m«m). The observed phenomenon has been explained as a consequence of specific domain structure (a replacement of optic axes occurred under the switching), rather than the electrogyration induced by spontaneous polarization. The first description of electrogyration effect induced by the biasing field and spontaneous polarization at ferroelectric phase transitions has been proposed by K. Aizu in 1963 on the basis of third-rank axial tensors [ [http://prola.aps.org/abstract/PR/v133/i6A/pA1584_1] Aizu K. (1964) “Reversal in optical rotatory power – “gyroelectric” crystals and “hypergyroelectric” crystals”, Phys. Rev. 133 (6A) A1584–A1588] (the manuscript received on September 9, 1963). Probably, K. Aizu has been the first who defined the electro-gyration effect (”the rate of change of the gyration with the biasing electric field at zero value of the biasing electric field is provisionally referred to as “electrogyration””) and introduced the term “electrogyration” itself. Almost simultaneously with K. Aizu, I.S. Zheludev has suggested tensor description of the electrogyration in 1964 [ [http://www.ifo.lviv.ua/institute/personal/publ/001.pdf] Zheludev I.S. (1964), "Axial tensors of the third rank and the physical effects they describe", "Kristallografiya" 9, 501-505. [(1965). "Sov.Phys.Crystallogr." 9,418] ] (the manuscript received on February 21, 1964). In this paper the electrogyration has been referred to as “electro-optic activity”.In 1969, O.G. Vlokh has measured for the first time the electrogyration effect induced by external biasing field in the quartz crystal and determined the coefficient of quadratic electro-gyration effect [ [http://www.ifo.lviv.ua/institute/personal/publ/002.pdf] Vlokh O.G.(1970). "Electrooptical activity of quartz crystals", "Ukr.Fiz.Zhurn."15(5), 758-762. [Blokh O.G. (1970). "Electrooptical activity of quartz crystals", "Sov.Phys. Ukr.Fiz.Zhurn."15, 771.] ] (the manuscript received on July 7, 1969).
Thus, the electrogyration effect has been predicted simultaneously by Aizu K. and Zheludev I.S. in 1963–1964 and revealed experimentally in quartz crystals by Vlokh O.G. in 1969. [ [http://www.ifo.lviv.ua/institute/personal/publ/002.pdf] Vlokh O.G.(1970). "Electrooptical activity of quartz crystals", "Ukr.Fiz.Zhurn."15(5), 758-762. [Blokh O.G. (1970). "Electrooptical activity of quartz crystals", "Sov.Phys. Ukr.Fiz.Zhurn."15, 771.] ] [ [http://www.jetpletters.ac.ru/ps/712/article_11013.shtml] Vlokh O.G. (1971) "Electrogyration effects in quartz crystals", "Pis.ZhETF." 13, 118-121 [Blokh O.G. (1971) "Electrogyration effects in quartz crystals", "Sov.Phys. Pis.ZhETF." 13, 81-83.] ] [ [http://www.informaworld.com/smpp/content~content=a752268592~db=all~order=page] Vlokh O.G. (1987), "Electrogyration properties of crystals" "Ferroelectrics" 75, 119-137.] [ [http://www.ifo.lviv.ua/journal/UJPO_PDF/2001_2/2001-53-57_new.pdf] Vlokh O.G. (2001) "The historical background of the finding of electrogyration", "Ukr.J.Phys.Opt.", 2(2), 53-57] .

Description

Electrodynamics relations

The electric field and the electric displacement vectors of electromagnetic wave propagating in gyrotropic crystals may be written respectively as:

E_{i}=B_{ij}^{0}D_{j}+ ildedelta_{ijk}frac{partial D_{j{partial x_{k=B_{ij}^{0}D_{j}+(ie_{ijl} ilde{g}_{lk}k_k)D_{j}, , (1)

or D_{i}=epsilon_{ij}^{0}E_{j}+delta_{ijk}frac{partial E_{j{partial x_{k=epsilon_{ij}^{0}E_{j}+(ie_{ijl}{g}_{lk}k_k)E_{j}, , (2)
where B_{ij}^{0} is the optical frequency impermeability tensor, epsilon_{ij}^{0} the dielectric permittivity tensor, ilde{g}_{lk}overline{n}=g_{kl}, overline{n} the mean refractive index, D_{j}, - induction, delta_{ijk}, , ildedelta_{ijk} polar third rank tensors, e_{ijl}, the unit antisymmetric Levi-Civit pseudo-tensor, k_k, the wave vector, and g_{lk}, , ilde{g}_{lk} the second rank gyration pseudo-tensors. The specific rotation angle of the polarization plane ho, caused by the natural optical activity is defined by the relation: ho=frac{pi}{lambda n}g_{lk}l_{l}l_{k}=frac{pi}{lambda n}G, , (3)
where n, is the refractive index, lambda, the wavelength, l_{l}, , l_{k}, the transformation coefficients between the Cartesian and spherical coordinate systems (l_{1}=sin Theta cos varphi, , l_{2}=sin Theta sin varphi, l_{3}=cos Theta), and G, the pseudo-scalar gyration parameter.The electro-gyration increment of gyration tensor occurred under the action of electric field E_{m}, or/and E_{n}, is written as:

Delta g_{lk}=gamma _{lkm}E_{m}+eta _{lkmn}E_{m}E_{n}, , (4)

where gamma _{lkm}, and eta _{lkmn}, are third- and fourth-rank axial tensors describing the linear and quadratic electrogyration, respectively. In the absence of linear birefringence, electrogyration increment of the specific rotatory power is given by: Delta ho=frac{pi}{lambda n}g_{lk}l_{l}l_{k}=frac{pi}{lambda n}Delta G=frac{pi}{lambda n}(gamma _{lkm}E_{m}+eta _{lkmn}E_{m}E_{n})l_{l}l_{k}. (5)The electrogyration effect may be also induced by spontaneous polarization P_{m}^{s}P_{n}^{s}, appearing in the course of ferroelectric phase transitions [ [http://www.ifo.lviv.ua/institute/personal/publ/006.pdf] Vlokh O.G., Kutniy I.V., Lazko L.A., and Nesterenko V.Ya. (1971) "Electrogyration of crystals and phase transitions", "Izv.AN SSSR, ser.fiz." XXXV (9), 1852-1855.] : Delta ho=frac{pi}{lambda n}g_{lk}l_{l}l_{k}=frac{pi}{lambda n}Delta G=frac{pi}{lambda n}( ildegamma _{lkm}P_{m}^{s}+ ildeeta _{lkmn}P_{m}^{s}P_{n}^{s})l_{l}l_{k}. (6)

Explanation on the basis of symmetry approach

The electrogyration effect can be easy explained on the basis of Curie and Neumann symmetry principles. In the crystals that exhibit centre of symmetry, natural gyration can not exist, since, due to the Neumann principle, the point symmetry group of the medium should be a subgroup of the symmetry group that describes the phenomena, which are properties of this medium. As a result, the gyration tensor possessing a symmetry of second-rank axial tensor - infty 2, is not a subgroup of centrosymmetric media and so the natural optical activity cannot exist in such media. According to the Curie symmetry principle, external actions reduce the symmetry group of the medium down to the group defined by intersection of the symmetry groups of the action and the medium. When the electric field (with the symmetry of polar vector, infty mm, ) influences the crystal which possess the inversion centre, the symmetry group of the crystal should be lowered to the acentric one, thus permitting the appearance of gyration. However, in case of the quadratic electrogyration effect, the symmetry of the action should be considered as that of the dyad product E_{m}E_{n} , or, what is the same, the symmetry of a polar second-rank tensor (infty /mmm, ). Such a centrosymmetric action cannot lead to lowering of centrosymmetric symmetry of crystal to acentric states. This is the reason why the quadratic electrogyration exists only in the acentric crystals.

Eigenwaves in the presence of electrogyration

In a general case of light propagation along optically anisotropic directions, the eigenwaves become elliptically polarized in the presence of electrogyration effect, including rotation of the azimuth of polarization ellipse. Then the corresponding ellipticity kappa , and the azimuth chi , are defined respectively by the relations kappa =frac{Delta G}{2Delta noverline{n, , (7)
an 2(alpha -chi )=frac{2kappa }{1+kappa ^2} an oldsymbol{Gamma } left ( 1+frac{P an 2alpha +(1-R)}{R+ an ^22alpha } ight ), , (8) where alpha , is the polarization azimuth of the incident light with respect to the principal indicatrix axis, Delta n, the linear birefringence, oldsymbolGamma , the phase retardation, P=frac{(1-kappa ^2)^2}{2kappa (1+kappa ^2)}, , and R=left (frac{2kappa }{1+kappa ^2} ight )^2+left (frac{1-kappa ^2}{1+kappa ^2} ight )^2, . In the case of light propagation along optically isotropic directions (i.e., the optic axes), the eigenwave become circularly polarized (kappa =1, ), with different phase velocities and different signs of circular polarization (left and right ones). Hence the relation (8) may be simplified so as to describe a pure polarization plane rotation: 2(alpha -chi )=oldsymbolGamma , , (9)or ho d=alpha -frac{oldsymbolGamma}{2}, , (10)where d, - is the sample thickness along the direction of light propagation.For the directions of light propagation far from the optic axis, the ellipticity kappa , is small and so one can neglect the terms proportional to kappa ^2, in Eq.(8). Thus, in order to describe the polarization azimuth at alpha =0, and the gyration tensor, simplified relations

an 2chi =-2kappa sin oldsymbolGamma, , (11)or g_{kl}=2chi Delta noverline{n}, . (12)are often used.According to Eq.(11), when the light propagates along anisotropic directions, the gyration (or the electro-gyration) effects manifest themselves as oscillations of the azimuth of polarization ellipse occurring with changing phase retardation oldsymbolGamma, .

Experimental results

The electrogyration effect has been revealed for the first time in quartz crystals [2] as an effect quadratic in the external field. Later on, both the linear and quadratic [ [http://www.ifo.lviv.ua/institute/personal/publ/007.pdf] Vlokh O.G., Krushel'nitskaya T.D. (1970). "Axial four-rank tensors and quadratic electrogyration", "Kristallografiya" 15(3), 587-589 [Vlokh O.G., Krushel'nitskaya T.D. (1970). "Axial four-rank tensors and quadratic electrogyration", "Sov.Phys.Crystallogr.", 15(3)] ] electrogyrations has been studied in the dielectric (alpha -, HIO3 [ [http://www.ifo.lviv.ua/institute/personal/publ/008.pdf] Vlokh O.G., Lazko L.A.and Nesterenko V.Ya. (1972). "Revealing of the linear electrogyration effect in alpha , HIO3 crystals", "Kristallografiya", 17(6), 1248-1250. ["Sov.Phys.Crystallogr.",17(6)] ] , LiIO3 [ [http://www.ifo.lviv.ua/institute/personal/publ/009.pdf] Vlokh O.G., Laz'ko L.A., Zheludev I.S. (1975). "Effect of external factors on gyrotropic properties of LiIO3 crystals", "Kristallografiya" 20(3), 654-656 ["Sov.Phys.Crystallogr.",20(3), 401] ] , PbMoO4 [ [http://www.ifo.lviv.ua/institute/personal/publ/010.pdf] Vlokh O.G., Zheludev I.S.and Klimov I.M. (1975), "Optical activity of the centrosymmetric crystals of lead molibdate - PbMoO4, induced by electric field (electrogyration)", "Dokl. AN SSSR." 223(6), 1391-1393.] , NaBi(MoO4)2, Pb5SiO4(VO4)2, Pb5SeO4(VO4)2, Pb5GeO4(VO4)2 [ [http://www.sigla.ru/] Vlokh O.G. (1984) "Spatial dispersion phenomena in parametric crystal optics." Lviv: Vyshcha Shkola (in Russian).] , alums [ [http://www3.interscience.wiley.com/cgi-bin/abstract/112397571/ABSTRACT] Weber H.J. and Haussuhl S. (1974), "Electric-Field-Induced Optical Activity and Circular Dichroism of Cr-Doped KAl(SO4)2 · 12H2O " "Phys. Stat. Sol.(b)" 65, 633-639.] [ [http://journals.iucr.org/a/issues/1979/01/00/issconts.html] Weber H.J. and Haussuhl S. (1979), "Electrogyration and piezogyration in NaClO3" "Acta Cryst." A35225-232.] [ [http://journals.iucr.org/a/issues/1976/05/00/issconts.html] Weber H.J., Haussuhl S. (1976) "Electrogyration effect in alums", "Acta Cryst." A32 892-895] etc.) semiconductor (AgGaS2, CdGa2S4) [ [http://www.ifo.lviv.ua/institute/personal/publ/015.pdf] Vlokh O.G., Zarik A.V., Nekrasova I.M. (1983), "On the electrogyration in AgGaS2 and CdGa2S4 crystals", "Ukr.Fiz.Zhurn.", 28(9), 1334-1338.] , ferroelectric (TGS, Rochelle Salt, Pb5Ge3O11 and KDP families etc.) [ [http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JAPIAU000049000002000809000001&idtype=cvips&gifs=Yes] Kobayashi J., Takahashi T., Hosakawa T. and Uesu Y. (1978). "A new method for measuring the optical activity of crystals and the optical activity of KH2PO4 ", "J.Appl. Phys." 49, 809-815. ] [ [http://www.informaworld.com/smpp/content~content=a755716926~db=all~order=page] Kobayashi J., Uesu Y. and Sorimachi H. (1978), "Optical activity of some non-enantiomorphous ferroelectrics", "Ferroelectrics". 21, 345-346.] [ [http://prola.aps.org/abstract/PRL/v42/i21/p1427_1] Uesu Y., Sorimachi H. and Kobayashi J. (1979), "Electrogyration of a Nonenantiomorphic Crystal, Ferroelectric KH2PO4 " "Phys. Rev. Lett." 42, 1427-1430.] [ [http://www3.interscience.wiley.com/cgi-bin/abstract/112443012/ABSTRACT] Vlokh O.G., Lazgko L.A., Shopa Y.I. (1981), "Electrooptic and Electrogyration Properties of the Solid Solutions on the Basis of Lead Germanate", "Phys.Stat.Sol. (a)" 65: 371-378.] , as well as the photorefractive (Bi12SiO20, Bi12GeO20, Bi12TiO20) materials [ [http://www.ifo.lviv.ua/institute/personal/publ/020.pdf] Vlokh O.G., Zarik A.V. (1977), "The effect of electric field on the polarization of light in the Bi12SiO20, Bi12GeO20, NaBrO3 crystals", "Ukr.Fiz.Zhurn." 22(6), 1027-1031.] [ [http://dx.doi.org/10.1063/1.1828585] Deliolanis N.C., Kourmoulis I.M., Asimellis G., Apostolidis A.G., Vanidhis E.D., and Vainos N.A. (2005), "Direct measurement of the dispersion of electrogyration coefficient of photorefractive Bi12GeO20", "J. Appl. Phys." 97, 023531.] [ [http://dx.doi.org/10.1007/s00340-006-2437-1] Deliolanis N.C, Vanidhis E.D, and Vainos N.A. (2006), "Dispersion of electogyration in sillenite crystals", "Appl. Phys. B" 85(4), 591-596.] . The electro-gyration effect induced by a powerful laser radiation (a so called self-induced or dynamic electro-gyration) has been studied in the works [ [http://www.jetpletters.ac.ru/ps/1451/article_22078.shtml] Akhmanov S.A., Zhdanov B.V., Zheludev N.I., Kovrigin N.I., Kuznetsov V.I. (1979). "Nonlinear optical activity in crystals", "Pis.ZhETF". 29, 294-298.] [ [http://www.jetpletters.ac.ru/ps/1413/article_21509.shtml] Zheludev N.I., Karasev V.Yu., Kostov Z.M. Nunuparov M.S.(1986) "Giant exciton resonance in nonlinear optical activity", "Pis.ZhETF", 43(12), 578-581.] . The influence of electro-gyration on the photorefraction storage has been investigated in [ [http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TVF-46JGY09-2BR&_user=10&_coverDate=04%2F01%2F1990&_rdoc=6&_fmt=summary&_orig=browse&_srch=doc-info(%23toc%235533%231990%23999239998%23333412%23FLP%23display%23Volume)&_cdi=5533&_sort=d&_docanchor=&view=c&_ct=19&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=27d23e12b85d69af10cee771d30389e5] Brodin M.S., Volkov V.I., Kukhtarev N.V. and Privalko A.V. (1990), "Nanosecond electrogyration selfdiffraction in Bi12TiO20 (BTO) crystal", "Optics Communications", 76(1), 21-24.] [ [http://www.turpion.org/php/paper.phtml?journal_id=qe&paper_id=5220] Kukhtarev N.V., Dovgalenko G.E. (1986) "Self-diffraction electrogyration and electroellipticity in centrosymmetric crystals", "Sov.J. Quantum Electron.", , 16 (1), 113-114.] , too. From the viewpoint of nonlinear electrodynamics, the existence of gradient of the electric field of optical wave in the range of the unit cell corresponds to macroscopic gradient of the external electrical field, if only the frequency transposition [ [http://www3.interscience.wiley.com/cgi-bin/abstract/112454661/ABSTRACT] Vlokh R.O. (1991). "Nonlinear medium polarization with account of gradient invariants.", "Phys. Stat.Sol (b)", 168, k47-K50.] is taken into account. In that sense, the electrogyration effect represents the first of the gradient nonlinear optical phenomena ever revealed.

References

See also

Piezo-gyration

Faraday effect


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Électro-optique — Effet électro optique Un effet électro optique correspond à une modification de la propagation d une onde électromagnétique dans un matériau. Cette modification est due à la présence d un champ électrique quasi statique. Ce terme couvre un… …   Wikipédia en Français

  • Electro-optic effect — An electro optic effect is a change in the optical properties of a material in response to an electric field that varies slowly compared with the frequency of light. The term encompasses a number of distinct phenomena, which can be subdivided… …   Wikipedia

  • Effet électro-optique — Un effet électro optique correspond à une modification de la propagation d une onde électromagnétique dans un matériau. Cette modification est due à la présence d un champ électrique quasi statique. Ce terme couvre un certain nombre de phénomènes …   Wikipédia en Français

  • Электрогирация — эффект пространственной дисперсии, состоящий в возникновении или изменении оптической активности (гирации) в кристаллах под действием постоянного или переменного электрического поля. Как явление пространственной дисперсии  электрогирация… …   Википедия

  • List of optical topics — Probably some Wikipedia articles on topics in optics are not yet listed on this page. If you cannot find the topic you are interested in on this page, the article may nonetheless exist; you can try to find it using the Search box, or look in and… …   Wikipedia

  • Index of optics articles — Optics is the branch of physics which involves the behavior and properties of light, including its interactions with matter and the construction of instruments that use or detect it.[1] Optics usually describes the behavior of visible,… …   Wikipedia

  • Cortex Cérébral — Pour les articles homonymes, voir Cortex (homonymie). Localisation du cortex cérébral. Le cortex cérébral (ou écorce cérébrale …   Wikipédia en Français

  • Cortex cerebral — Cortex cérébral Pour les articles homonymes, voir Cortex (homonymie). Localisation du cortex cérébral. Le cortex cérébral (ou écorce cérébrale …   Wikipédia en Français

  • Cortex cérébral — Pour les articles homonymes, voir Cortex (homonymie). Localisation du cortex cérébral. Le cortex cérébral (ou écorce cérébrale …   Wikipédia en Français

  • Écorce cérébrale — Cortex cérébral Pour les articles homonymes, voir Cortex (homonymie). Localisation du cortex cérébral. Le cortex cérébral (ou écorce cérébrale …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”