Photoacoustic tomography

Photoacoustic tomography

Photoacoustic tomography (PAT), or photoacoustic computed tomography (PACT), is a materials analysis technique based on the reconstruction of an internal photoacoustic source distribution from measurements acquired by scanning ultrasound detectors over a surface that encloses the source under study.

Introduction

The PA source is produced inside the object by the thermal expansion that results from a small temperature rise, which is caused by the absorption of externally applied radiation of pulsed electromagnetic (EM) waves. This technique has great potential for applications in the biomedical field because of the advantages of ultrasonic resolution in combination with EM absorption contrast. PAT is also called optoacoustic tomography (OAT) or thermoacoustic tomography (TAT), with the term “thermoacoustic” emphasizing the thermal expansion mechanism in the PA generation. OAT refers particularly to light-induced PAT, while TAT is used to refer to rf-induced PAT.

Technically, each temporal PA signal, measured at various detection positions, provides one-dimensional radial information about the PA source relative to the detector position; 2D surface scans offer other 2D lateral information about the PA source. Combining the temporal and spatial measurements affords sufficient information for a complete reconstruction of a 3D PA source. Because the PA signal received by each ultrasound detector is the integral of the ultrasound waves over the sensing aperture of the detector, the reconstruction algorithms depend on the detector apertures as well as the scanning geometries. Small-aperture detectors are often used to approximate point detectors, which receive PA signals originating from spherical shells, centered at each point detector, with radii determined by the acoustic times of flight. The three geometries commonly used are planar, cylindrical, and spherical surfaces. Both Fourier- and time-domain reconstruction formulas with point-detector measurements for these geometries have been well established. Besides, algorithms based on other detection methods, such as large-aperture (plane), line, or circle detectors have also been derived.

ee also

*Reconstruction-based photoacoustic imaging in biomedicine

References

[http://link.aip.org/link/?RSI/77/041101/1] Photoacoustic imaging in biomedicine. Review Article. Review of Scientific Instruments, 77, Article Number 041101 (2006).

[http://www.opticsinfobase.org/abstract.cfm?id=134699] Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector. Applied Optics, 46, pp. 3352-3358 (2007).


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Photoacoustic imaging in biomedicine — Photoacoustic imaging, as a hybrid biomedical imaging modality, is developed based on the photoacoustic effect. In photoacoustic imaging, non ionizing laser pulses are delivered into biological tissues (when radio frequency pulses are used, the… …   Wikipedia

  • Tomography — Basic principle of tomography: superposition free tomographic cross sections S1 and S2 compared with the projected image P Tomography refers to imaging by sections or sectioning, through the use of any kind of penetrating wave. A device used in… …   Wikipedia

  • List of materials analysis methods — List of materials analysis methods: Contents: Top · 0–9 · A B C D E F G H I J K L M N O P Q R S T U V W X Y Z μSR see Muon spin spectroscopy …   Wikipedia

  • Preclinical imaging — is the visualization of animals for research purposes, such as drug development. Imaging modalities have long been crucial to the researcher in observing changes, either at the organ, tissue, cell, or molecular level, in animals responding to… …   Wikipedia

  • Optoacoustic imaging — (Photoacoustic Imaging) is an imaging technology based on the photoacoustic effect, and can be used for obtaining images of structures in turbid environments. The optoacoustic technique combines the accuracy of spectroscopy with the depth… …   Wikipedia

  • Monte Carlo method for photon transport — Modeling photon propagation with Monte Carlo methods is a flexible yet rigorous approach to simulate photon transport. In the method, local rules of photon transport are expressed as probability distributions which describe the step size of… …   Wikipedia

  • PAT — may refer to: Contents 1 Organizations 2 Science and technology 3 Medicine and biology …   Wikipedia

  • April 2008 in science — NOTOC 2008 : ← January February March April May June July August September October November December → Events in science and technologyApril 30 2008 (Wednesday)*HP Labs announces the creation of the memristor, at times described as the fourth… …   Wikipedia

  • Medical imaging — This article is about imaging techniques and modalities for the human body. For imaging of animals in research, see Preclinical imaging. Medical imaging Diagnostics A CT scan image showing a ruptured abdominal aortic aneurysm …   Wikipedia

  • Melanoma — Classification and external resources A melanoma ICD 10 C43 …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”