Zeckendorf's theorem

Zeckendorf's theorem

Zeckendorf's theorem, named after Belgian mathematician Edouard Zeckendorf, is a theorem about the representation of integers as sums of Fibonacci numbers.

Zeckendorf's theorem states that every positive integer can be represented in a unique way as the sum of "one or more" distinct Fibonacci numbers in such a way that the sum does not include any two consecutive Fibonacci numbers. More precisely, if "N" is any positive integer, there exist positive integers "c""i" ≥ 2, with "c""i" + 1 > "c""i" + 1, such that

:N = sum_{i = 0}^k F_{c_i}, where "F""n" is the "n"th Fibonacci number. Such a sum is called the Zeckendorf representation of "N".

For example, the Zeckendorf representation of 100 is

:100 = 89 + 8 + 3

There are other ways of representing 100 as the sum of Fibonacci numbers - for example

:100 = 89 + 8 + 2 + 1:100 = 55 + 34 + 8 + 3

but these are not Zeckendorf representations because 1 and 2 are consecutive Fibonacci numbers, as are 34 and 55.

For any given positive integer, a representation that satisfies the conditions of Zeckendorf's theorem can be found by using a greedy algorithm, choosing the largest possible Fibonacci number at each stage.

Proof of Zeckendorf's theorem

Zeckendorf's theorem has two parts:

#Existence: every positive integer "n" has a Zeckendorf representation.
#Uniqueness: no positive integer "n" has two different Zeckendorf representations.

The first part of Zeckendorf's theorem (existence) can be proved by induction. For "n" = 1, 2, 3 it is clearly true, for "n" = 4 we have 4 = 3 + 1.Now let each n leq k have a Zeckendorf's representation. If "k" + 1 is a Fibonacci number then we're done, else there exists "j" such that F_j < k + 1. Now consider a = k + 1 - F_j. Since it is "a" < "k", a has "a" Zeckendorf representation; moreover F_j + a < F_{j + 1} then a < F_{j - 1} so the Zeckendorf representation of "a" does not contain F_{j - 1}. Then "k" + 1 can be represented as a + F_j. Moreover, it is obvious that each Zeckendorf representation corresponds to only one integer.

The second part of Zeckendorf's theorem (uniqueness) requires the following lemma:

:"Lemma": The sum of any non-empty set of distinct, non-consecutive Fibonacci numbers whose largest member is "F""j" is strictly less than the next largest Fibonacci number "F""j"+1.

The lemma can be proved by induction on "F""j".

Now take two non-empty sets of distinct non-consecutive Fibonacci numbers S and T which have the same sum. Eliminate common members to form two sets S' and T' with no members in common. We want to show that S' and T' are both empty i.e. that S=T.

First we show that at least one of S' and T' is empty. Assume the contrary i.e. that S' and T' are both non-empty. Let the largest member of S' be "F""s" and the largest member of T' be "F""t". Without loss of generality, suppose "F""s"<"F""t". Then by the lemma, the sum of S' is strictly less than "F""s+1", and so is strictly less than "F""t", whereas the sum of T' is clearly at least "F""t". This means that S' and T' cannot have the same sum, and so S and T cannot have the same sum. So our assumption that S' and T' are both non-empty must be incorrect.

If S' is empty and T' is non-empty then S is a proper sub-set of T, and so S and T cannot have the same sum. Similarly we can eliminate the case where S' is non-empty and T' is empty. The only remaining case is that S' and T' are both empty, so S=T. We conclude that any two Zeckendorf representations that have the same sum must be identical (up to order).

Fibonacci multiplication

One can define the following operation acirc b on natural numbers "a", "b": given the Zeckendorf representationsa=sum_{i=0}^kF_{c_i};(c_ige2) and b=sum_{j=0}^lF_{d_j};(d_jge2) we define the Fibonacci product acirc b=sum_{i=0}^ksum_{j=0}^lF_{c_i+d_j}.

For example, the Zeckendorf representation of 2 is F_3, and the Zeckendorf representation of 4 is F_4 + F_2 (F_1 is disallowed from representations), so 2 circ 4 = F_{3+4} + F_{3+2} = 13 + 5 = 18.

Don Knuth proved the surprising fact that this operation is associative. See also OEIS2C|id=A101330.

References

D. E. Knuth, Fibonacci multiplication, "Appl. Math. Lett." 1 (1988), 57–60

ee also

* Fibonacci coding

External links

*MathWorld |title=Zeckendorf's Theorem |urlname=ZeckendorfsTheorem
*MathWorld |title=Zeckendorf Representation |urlname=ZeckendorfRepresentation
* [http://www.cut-the-knot.org/ctk/OnePile.shtml#fibnim Zeckendorf's theorem] at cut-the-knot
*SpringerEOM|urlname=Z/z120020|title=Zeckendorf representation|author=G.M. Phillips


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Zeckendorf — may refer to:* Edouard Zeckendorf, Belgian mathematician known for Zeckendorf s theorem * William Zeckendorf, Sr, American real estate developer * William Zeckendorf Jr, real estate developer * Arthur W. Zeckendorf, owner and co chairman of… …   Wikipedia

  • Edouard Zeckendorf — (May 2, 1901 May 16, 1983) was a Belgian doctor, army officer, and mathematician. In mathematics he is best known for his work on Fibonacci numbers, and in particular for proving Zeckendorf s theorem.Zeckendorf was born in Liège in 1901, the son… …   Wikipedia

  • Edouard Zeckendorf — (* 2. Mai 1901 in Lüttich, Belgien; † 16. Mai 1983 in Lüttich) war ein belgischer Amateur Mathematiker. Zeckendorf war Arzt für Allgemeinmedizin, wurde 1925 Offizier in der belgischen Armee und spezialisierte sich nach seiner Militärzeit als… …   Deutsch Wikipedia

  • Fibonacci number — A tiling with squares whose sides are successive Fibonacci numbers in length …   Wikipedia

  • Фибоначчиева система счисления — смешанная система счисления для целых чисел на основе чисел Фибоначчи F2=1, F3=2, F4=3, F5=5, F6=8 и т.д. Число Запись в ФСС Код Фибоначчи 0 0……0   …   Википедия

  • List of theorems — This is a list of theorems, by Wikipedia page. See also *list of fundamental theorems *list of lemmas *list of conjectures *list of inequalities *list of mathematical proofs *list of misnamed theorems *Existence theorem *Classification of finite… …   Wikipedia

  • List of mathematics articles (Z) — NOTOC Z Z channel (information theory) Z factor Z function Z group Z matrix (mathematics) Z notation Z order (curve) Z test Z transform Z* theorem Zadoff–Chu sequence Zahorski theorem Zakai equation Zakharov–Schulman system Zakharov system ZAMM… …   Wikipedia

  • Fibonacci number — Suite de Fibonacci La suite de Fibonacci est une suite d entiers très connue. Elle doit son nom à un mathématicien italien connu sous le nom de Leonardo Fibonacci qui, dans un problème récréatif posé dans un de ses ouvrages, le Liber Abaci,… …   Wikipédia en Français

  • Identité de Cassini — Suite de Fibonacci La suite de Fibonacci est une suite d entiers très connue. Elle doit son nom à un mathématicien italien connu sous le nom de Leonardo Fibonacci qui, dans un problème récréatif posé dans un de ses ouvrages, le Liber Abaci,… …   Wikipédia en Français

  • Nombre Tetranacci — Suite de Fibonacci La suite de Fibonacci est une suite d entiers très connue. Elle doit son nom à un mathématicien italien connu sous le nom de Leonardo Fibonacci qui, dans un problème récréatif posé dans un de ses ouvrages, le Liber Abaci,… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”