GroEL

GroEL

GroEL belongs to the chaperonin family of molecular chaperones, and is found in a large number of bacteriacite journal |author=Zeilstra-Ryalls J, Fayet O, Georgopoulos C|title=The universally conserved GroE (Hsp60) chaperonins |journal=Annu Rev Microbiol. |year=1991 |pmid = 1683763|doi=10.1146/annurev.mi.45.100191.001505|volume=45|pages=301] . It is required for the proper folding of many proteins. To function properly, GroEL requires the lid-like cochaperonin protein complex GroES. In eukaryotes the proteins Hsp60 and Hsp10 are structurally and functionally nearly identical to GroEL and GroES, respectively.

Mechanism

Within the cell, the process of GroEL/ES mediated protein folding involves multiple rounds of binding, encapsulation, and release of substrate protein. Unfolded substrate proteins bind to a hydrophobic binding patch on the interior rim of the open cavity of GroEL, forming a binary complex with the chaperonin. Binding of substrate protein in this manner, in addition to binding of ATP, induces a conformational change that allows association of the binary complex with a separate lid structure, GroES. Binding of GroES to the open cavity of the chaperonin induces the individual subunits of the chaperonin to rotate such that the hydrophobic substrate binding site is removed from the interior of the cavity, causing the substrate protein to be ejected from the rim into the now largely hydrophilic chamber. The hydrophilic environment of the chamber favors the burying of hydrophobic residues of the substrate, inducing substrate folding. Hydrolysis of ATP and binding of a new substrate protein to the opposite cavity sends an allosteric signal causing GroES and the encapsulated protein to be released into the cytosol. A given protein will undergo multiple rounds of folding, returning each time to its original unfolded state, until the native conformation or an intermediate structure committed to reaching the native state is achieved. Alternatively, the substrate may succumb to a competing reaction, such as misfolding and aggregation with other misfolded proteins.cite journal |author=Horwich AL, Fenton WA, Chapman E, Farr GW |title=Two Families of Chaperonin: Physiology and Mechanism |journal=Annu Rev Cell Dev Biol. |year=2007 |pmid = 17489689 |doi=10.1146/annurev.cellbio.23.090506.123555 |volume=23 |pages=115]

Thermodynamics

The constricted nature of the interior of the molecular complex strongly favors compact molecular conformations of the substrate protein. Free in solution, long-range, non-polar interactions can only occur at a high cost in entropy. In the close quarters of the GroEL complex, the relative loss of entropy is much smaller. The method of capture also tends to concentrate the non-polar binding sites separately from the polar sites. When the GroEL non-polar surfaces are removed, the chance that any given non-polar group will encounter a non-polar intramolecular site are much greater than in bulk solution. The hydrophobic sites which were on the outside are gathered together at the top of the "cis" domain and bind each other. The geometry of GroEL requires that the polar structures lead, and they envelop the non-polar core as it emerges from the "trans" side.

tructure

Structurally, GroEL is a dual-ringed tetradecamer, with both the "cis" and "trans" rings consisting of seven subunits each. The inside of GroEL is hydrophobic, and is likely where protein folding takes place.

The key to the activity of GroEL is in the structure of the monomer. The Hsp60 monomer has three distinct sections separated by two hinge regions. The apical section contains a large number of hydrophobic binding sites for "native" (unfolded) protein substrates. Many globular proteins won't bind to the apical domain because their hydrophobic parts are clustered inside, away from the aqueous medium since this is the thermodynamically optimal conformation. Thus, these "substrate sites" will only bind to proteins which are not optimally folded. The apical domain also has binding sites for the Hsp10 monomers of GroES.

The equatorial domain has a slot near the hinge point for binding ATP, as well as two attachment points for the other half of the GroEL molecule. The rest of the equatorial section is moderately hydrophilic.

The addition of ATP and GroES has a drastic effect on the conformation of the "cis" domain. This effect is caused by flexion and rotation at the two hinge points on the Hsp60 monomers. The intermediate domain folds down and inward about 25° on the lower hinge. This effect, multiplied through the cooperative flexing of all monomers, increases the equatorial diameter of the GroEL cage. But the apical domain rotates a full 60° up and out on the upper hinge, and also rotates 90° around the hinge axis. This motion opens the cage very widely at the top of the "cis" domain, but completely removes the substrate binding sites from the inside of the cage.

See also

* Chaperonin
* Heat shock protein

References

Further reading

PBB_Further_reading
citations =
*cite journal | author=Tabibzadeh S, Broome J |title=Heat shock proteins in human endometrium throughout the menstrual cycle |journal=Infectious diseases in obstetrics and gynecology |volume=7 |issue= 1-2 |pages= 5–9 |year= 1999 |pmid= 10231001 |doi=10.1002/(SICI)1098-0997(1999)7:1/2<5::AID-IDOG2>3.0.CO;2-Y
*cite journal | author=Schäfer C, Williams JA |title=Stress kinases and heat shock proteins in the pancreas: possible roles in normal function and disease |journal=J. Gastroenterol. |volume=35 |issue= 1 |pages= 1–9 |year= 2000 |pmid= 10632533 |doi=
*cite journal | author=Moseley P |title=Stress proteins and the immune response |journal=Immunopharmacology |volume=48 |issue= 3 |pages= 299–302 |year= 2000 |pmid= 10960671 |doi=10.1016/S0162-3109(00)00227-7
*cite journal | author=Liu Y, Steinacker JM |title=Changes in skeletal muscle heat shock proteins: pathological significance |journal=Front. Biosci. |volume=6 |issue= |pages= D12–25 |year= 2001 |pmid= 11145923 |doi=10.2741/Liu
*cite journal | author=Van Maele B, Debyser Z |title=HIV-1 integration: an interplay between HIV-1 integrase, cellular and viral proteins |journal=AIDS reviews |volume=7 |issue= 1 |pages= 26–43 |year= 2005 |pmid= 15875659 |doi=
*cite journal | author=Hochstrasser DF, Frutiger S, Paquet N, "et al." |title=Human liver protein
journal=Electrophoresis |volume=13 |issue= 12 |pages= 992–1001 |year= 1993 |pmid= 1286669 |doi=10.1002/elps.11501301201

*cite journal | author=Ikawa S, Weinberg RA |title=An interaction between p21ras and heat shock protein hsp60, a chaperonin |journal=Proc. Natl. Acad. Sci. U.S.A. |volume=89 |issue= 6 |pages= 2012–6 |year= 1992 |pmid= 1347942 |doi=10.1073/pnas.89.6.2012
*cite journal | author=Brudzynski K, Martinez V, Gupta RS |title=Immunocytochemical localization of heat-shock protein 60-related protein in beta-cell secretory granules and its altered distribution in non-obese diabetic mice |journal=Diabetologia |volume=35 |issue= 4 |pages= 316–24 |year= 1992 |pmid= 1516759 |doi=10.1007/BF00401198
*cite journal | author=Dawson SJ, White LA |title=Treatment of Haemophilus aphrophilus endocarditis with ciprofloxacin |journal=J. Infect. |volume=24 |issue= 3 |pages= 317–20 |year= 1992 |pmid= 1602151 |doi=10.1016/S0163-4453(05)80037-4
*cite journal | author=Singh B, Patel HV, Ridley RG, "et al." |title=Mitochondrial import of the human chaperonin (HSP60) protein |journal=Biochem. Biophys. Res. Commun. |volume=169 |issue= 2 |pages= 391–6 |year= 1990 |pmid= 1972619 |doi=10.1016/0006-291X(90)90344-M
*cite journal | author=Venner TJ, Singh B, Gupta RS |title=Nucleotide sequences and novel structural features of human and Chinese hamster hsp60 (chaperonin) gene families |journal=DNA Cell Biol. |volume=9 |issue= 8 |pages= 545–52 |year= 1991 |pmid= 1980192 |doi=
*cite journal | author=Ward LD, Hong J, Whitehead RH, Simpson RJ |title=Development of a database of amino acid sequences for human colon carcinoma proteins separated by two-dimensional polyacrylamide gel electrophoresis |journal=Electrophoresis |volume=11 |issue= 10 |pages= 883–91 |year= 1991 |pmid= 2079031 |doi= 10.1002/elps.1150111019
*cite journal | author=Jindal S, Dudani AK, Singh B, "et al." |title=Primary structure of a human mitochondrial protein homologous to the bacterial and plant chaperonins and to the 65-kilodalton mycobacterial antigen |journal=Mol. Cell. Biol. |volume=9 |issue= 5 |pages= 2279–83 |year= 1989 |pmid= 2568584 |doi=
*cite journal | author=Waldinger D, Eckerskorn C, Lottspeich F, Cleve H |title=Amino-acid sequence homology of a polymorphic cellular protein from human lymphocytes and the chaperonins from Escherichia coli (groEL) and chloroplasts (Rubisco-binding protein) |journal=Biol. Chem. Hoppe-Seyler |volume=369 |issue= 10 |pages= 1185–9 |year= 1989 |pmid= 2907406 |doi=
*cite journal | author=Kreisel W, Hildebrandt H, Schiltz E, "et al." |title=Immuno-gold electron microscopical detection of heat shock protein 60 (hsp60) in mitochondria of rat hepatocytes and myocardiocytes |journal=Acta Histochem. |volume=96 |issue= 1 |pages= 51–62 |year= 1994 |pmid= 7518175 |doi=
*cite journal | author=Corbett JM, Wheeler CH, Baker CS, "et al." |title=The human myocardial two-dimensional gel protein database: update 1994 |journal=Electrophoresis |volume=15 |issue= 11 |pages= 1459–65 |year= 1995 |pmid= 7895732 |doi=10.1002/elps.11501501209
*cite journal | author=Baca-Estrada ME, Gupta RS, Stead RH, Croitoru K |title=Intestinal expression and cellular immune responses to human heat-shock protein 60 in Crohn's disease |journal=Dig. Dis. Sci. |volume=39 |issue= 3 |pages= 498–506 |year= 1994 |pmid= 7907543 |doi=10.1007/BF02088334
*cite journal | author=Vélez-Granell CS, Arias AE, Torres-Ruíz JA, Bendayan M |title=Molecular chaperones in pancreatic tissue: the presence of cpn10, cpn60 and hsp70 in distinct compartments along the secretory pathway of the acinar cells |journal=J. Cell. Sci. |volume=107 ( Pt 3) |issue= |pages= 539–49 |year= 1994 |pmid= 7911805 |doi=
*cite journal | author=Mayhew M, da Silva AC, Martin J, "et al." |title=Protein folding in the central cavity of the GroEL-GroES chaperonin complex |journal=Nature |volume=379 |issue= 6564 |pages= 420–6 |year= 1996 |pmid= 8559246 |doi= 10.1038/379420a0
*cite journal | author=Tabibzadeh S, Kong QF, Satyaswaroop PG, Babaknia A |title=Heat shock proteins in human endometrium throughout the menstrual cycle |journal=Hum. Reprod. |volume=11 |issue= 3 |pages= 633–40 |year= 1996 |pmid= 8671282 |doi=

External links

*
*cite web|title=Palaeos Bacteria: Pieces: GroEL|url=http://www.palaeos.com/Bacteria/Pieces/GroEL.html (No rights reserved)

PBB_Controls
update_page = yes
require_manual_inspection = no
update_protein_box = yes
update_summary = yes
update_citations = yes


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • GroEL — es una chaperona molecular de Escherichia coli de 60 kDa que forma un complejo cilíndrico activo de dos anillos que contienen 7 sub unidades de GroEL cada uno. GroEL junto con GroES forman parte del complejo molecular llamado GroEL/GroES.… …   Wikipedia Español

  • GroEL — La protéine GroEL appartient à la famille des chaperonines des molécules chaperonnes, et se trouve chez un grand nombre de bactéries[1]. Elle est nécessaire pour le repliement efficace de nombreuses protéines. Afin de fonctionner efficacement,… …   Wikipédia en Français

  • GroEL — Dieser Artikel oder Abschnitt ist nicht hinreichend mit Belegen (Literatur, Webseiten oder Einzelnachweisen) versehen. Die fraglichen Angaben werden daher möglicherweise demnächst gelöscht. Hilf Wikipedia, indem du die Angaben recherchierst und… …   Deutsch Wikipedia

  • GroEL/GroES — en Escherichia coli es un complejo protéico de aproximadamente 1 MDa formado por GroEL y GroES que ayuda en el plegamiento de otras proteínas que han sufrido cambios en su estructura tridimensional y química tales como, la exposición de residuos… …   Wikipedia Español

  • groEL — See chaperonins …   Dictionary of molecular biology

  • August Groel — (* 12. Februar 1898 in Erfenbach; † im 20. oder 21. Jahrhundert) war ein deutscher Spanienkämpfer, Widerstandskämpfer gegen den Nationalsozialismus, Häftling im KZ Buchenwald und Mitarbeiter im DDR Außenhandelsministerium. Leben Groel trat in die …   Deutsch Wikipedia

  • GroES — Heat shock 10kDa protein 1 (chaperonin 10) Identifiers Symbols HSPE1; CPN10; EPF; GROES; HSP10 External IDs …   Wikipedia

  • Arthur Horwich — Arthur L. Horwich (* 1951) ist ein US amerikanischer Zellbiologe. Er lehrt und forscht als Professor für Genetik und Pädiatrie an der Yale University und am Howard Hughes Medical Institute. Inhaltsverzeichnis 1 Leben und Wirken 2 Auszeichnungen 3 …   Deutsch Wikipedia

  • Chaperone (protein) — A top view of the GroES/GroEL bacterial chaperone complex model In molecular biology, chaperones are proteins that assist the non covalent folding or unfolding and the assembly or disassembly of other macromolecular structures, but do not occur… …   Wikipedia

  • Chaperonin — Chaperonins are proteins that fold and unfold other proteins. Newly made proteins usually must fold from a linear chain of amino acids into a three dimensional form. Chaperonins belong to a large class of molecules that assist protein folding,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”