Discontinuous Galerkin method

Discontinuous Galerkin method

Discontinuous Galerkin methods (DG methods) in mathematics form a class of numerical methods for solving partial differential equations. They combine features of the finite element and the finite volume framework and have been successfully applied to hyperbolic, elliptic and parabolic problems arising from a wide range of applications. DG methods have in particular received considerable interest for problems with a dominant first-order part, e.g. in electrodynamics, fluid mechanics and plasma physics.

Discontinuous Galerkin methods were first proposed and analyzed in the early 1970s as a technique to numerically solve partial differential equations. In 1973 Reed and Hill introduced a DG method to solve the hyperbolic neutron transport equation.

The origin of the DG method for elliptic problems cannot be traced back to a single publication as features such as jump penalization in the modern sense were developed gradually. However, among the early influential contributors were Babuška, J.-L. Lions, Nitsche and Zlamal. Interestingly DG methods for elliptic problems were already developed in a paper by Baker in the setting of 4th order equations in 1977. A more complete account of the historical development and an introduction to DG methods for elliptic problems is given in a publication by Arnold, Brezzi, Cockburn and Marini. A number of research directions and challenges on DG methods are collected in the proceedings volume edited by Cockburn, Karniadakis and Shu.

See also

References

  • D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39(5):1749-1779, 2002.
  • G. Baker, Finite element methods for elliptic equations using nonconforming elements, Math. Comp. 31 (1977), no. 137, 45–59.
  • B. Cockburn, G. E. Karniadakis and C.-W. Shu (eds.), Discontinuous Galerkin methods. Theory, computation and applications, Lecture Notes in Computational Science and Engineering, 11. Springer-Verlag, Berlin, 2000.
  • D.A. Di Pietro and A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods. Mathématiques et Applications, Vol. 69, Springer-Verlag, Berlin, 2011.
  • J.S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer Texts in Applied Mathematics 54. Springer Verlag, New York, 2008.
  • CFD Wiki http://www.cfd-online.com/Wiki/Discontinuous_Galerkin
  • W.H. Reed and T.R. Hill, Triangular mesh methods for the neutron transport equation, Tech. Report LA-UR-73-479, Los Alamos Scientific Laboratory, 1973.

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Method of lines — The method of lines (MOL, NMOL, NUMOL) (Schiesser, 1991; Hamdi, et al., 2007; Schiesser, 2009 ) is a technique for solving partial differential equations (PDEs) in which all but one dimension is discretized. MOL allows standard, general purpose… …   Wikipedia

  • Boris Galerkin — Boris Grigoryevich Galerkin ( ru. Борис Григорьевич Галёркин, surname more accurately romanized as Galyorkin; OldStyleDate|March 4|1871|February 20, 1871 – July 12, 1945), born in Polozk, Belarus, was a mathematician and an… …   Wikipedia

  • Spectral method — Spectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain Dynamical Systems, often involving the use of the Fast Fourier Transform. Where applicable, spectral methods have… …   Wikipedia

  • Méthode de Galerkin — En mathématiques, dans le domaine de l analyse numérique, les méthodes de Galerkin sont une classe de méthodes permettant de transformer un problème continu (par exemple une équation différentielle) en un problème discret. Cette approche est… …   Wikipédia en Français

  • Crank–Nicolson method — In numerical analysis, the Crank–Nicolson method is a finite difference method used for numerically solving the heat equation and similar partial differential equations.[1] It is a second order method in time, implicit in time, and is numerically …   Wikipedia

  • Multigrid method — Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential equations using a hierarchy of discretizations. They are an example of a class of techniques called multiresolution methods, very useful in (but not… …   Wikipedia

  • Collocation method — In mathematics, a collocation method is a method for the numerical solution of ordinary differential equations, partial differential equations and integral equations. The idea is to choose a finite dimensional space of candidate solutions… …   Wikipedia

  • Schwarz alternating method — In mathematics, the Schwarz alternating method, named after Hermann Schwarz, is an iterative method to find the solution of a partial differential equations on a domain which is the union of two overlapping subdomains, by solving the equation on… …   Wikipedia

  • Neumann–Dirichlet method — In mathematics, the Neumann–Dirichlet method is a domain decomposition preconditioner which involves solving Neumann boundary value problem on one subdomain and Dirichlet boundary value problem on another, adjacent across the interface between… …   Wikipedia

  • Finite element method — The finite element method (FEM) (sometimes referred to as finite element analysis) is a numerical technique for finding approximate solutions of partial differential equations (PDE) as well as of integral equations. The solution approach is based …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”