Four-square cipher


Four-square cipher

The Four-square cipher is a manual symmetric encryption technique. It was invented by famous French cryptographer Felix Delastelle.

The technique encrypts pairs of letters ("digraphs"), and thus falls into a category of ciphers known as polygraphic substitution ciphers. This adds significant strength to the encryption when compared with monographic substitution ciphers which operate on single characters. The use of digraphs makes the four-square technique less susceptible to frequency analysis attacks, as the analysis must be done on 676 possible digraphs rather than just 26 for monographic substitution. The frequency analysis of digraphs is possible, but considerably more difficult - and it generally requires a much larger ciphertext in order to be useful.

Using four-square

The four-square cipher uses four 5 by 5 matrices arranged in a square. Each of the 5 by 5 matrices contains the letters of the alphabet (usually omitting "Q" or putting both "I" and "J" in the same location to reduce the alphabet to fit). In general, the upper-left and lower-right matrices are the "plaintext squares" and each contain a standard alphabet. The upper-right and lower-left squares are the "ciphertext squares" and contain a mixed alphabetic sequence.

To generate the ciphertext squares, one would first fill in the spaces in the matrix with the letters of a keyword or phrase (dropping any duplicate letters), then fill the remaining spaces with the rest of the letters of the alphabet in order (again omitting "Q" to reduce the alphabet to fit). The key can be written in the top rows of the table, from left to right, or in some other pattern, such as a spiral beginning in the upper-left-hand corner and ending in the center. The keyword together with the conventions for filling in the 5 by 5 table constitute the cipher key. The four-square algorithm allows for two separate keys, one for each of the two ciphertext matrices.

As an example, here are the four-square matrices for the keywords "example" and "keyword." The plaintext matrices are in lowercase and the ciphertext matrices are in caps to make this example visually more simple:

a b c d e E X A M P f g h i j L B C D F k l m n o G H I J K p r s t u N O R S T v w x y z U V W Y Z K E Y W O a b c d e R D A B C f g h i j F G H I J k l m n o L M N P S p r s t u T U V X Z v w x y z

Algorithm

To encrypt a message, one would follow these steps:

* Split the payload message into digraphs. ("HELLO WORLD" becomes "HE LL OW OR LD")
* Find the first letter in the digraph in the upper-left plaintext matrix. a b c d e E X A M P f g "h" i j L B C D F k l m n o G H I J K p r s t u N O R S T v w x y z U V W Y Z K E Y W O a b c d e R D A B C f g h i j F G H I J k l m n o L M N P S p r s t u T U V X Z v w x y z

* Find the second letter in the digraph in the lower-right plaintext matrix. a b c d e E X A M P f g "h" i j L B C D F k l m n o G H I J K p r s t u N O R S T v w x y z U V W Y Z K E Y W O a b c d "e" R D A B C f g h i j F G H I J k l m n o L M N P S p r s t u T U V X Z v w x y z

* The first letter of the encrypted digraph is in the same row as the first plaintext letter and the same column as the second plaintext letter. It is therefore in the upper-right ciphertext matrix. a b c d e E X A M P f g h i j L B C D "F" k l m n o G H I J K p r s t u N O R S T v w x y z U V W Y Z K E Y W O a b c d e R D A B C f g h i j F G H I J k l m n o L M N P S p r s t u T U V X Z v w x y z

* The second letter of the encrypted digraph is in the same row as the second plaintext letter and the same column as the first plaintext letter. It is therefore in the lower-left ciphertext matrix. a b c d e E X A M P f g h i j L B C D F k l m n o G H I J K p r s t u N O R S T v w x y z U V W Y Z K E "Y" W O a b c d e R D A B C f g h i j F G H I J k l m n o L M N P S p r s t u T U V X Z v w x y z

Using the four-square example given above, we can encrypt the following plaintext:

Plaintext: he lp me ob iw an ke no bi Ciphertext: FY GM KY HO BX MF KK KI MD

Here is the four-square written out again but blanking all of the values that aren't used for encrypting the first digraph "he" into "FY"

- - - - - - - - - - - - h - - - - - - F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Y - - - - - - e - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

As can be seen clearly, the method of encryption simply involves finding the other two corners of a rectangle defined by the two letters in the plaintext digraph. The encrypted digraph is simply the letters at the other two corners, with the upper-right letter coming first.

Decryption works the same way, but in reverse. The ciphertext digraph is split with the first character going into the upper-right matrix and the second character going into the lower-left matrix. The other corners of the rectangle are then located. These represent the plaintext digraph with the upper-left matrix component coming first.

Four-square cryptanalysis

Like most pre-modern era ciphers, the four-square cipher can be easily cracked if there is enough text. Obtaining the key is relatively straightforward if both plaintext and ciphertext are known. When only the ciphertext is known, brute force cryptanalysis of the cipher involves searching through the key space for matches between the frequency of occurrence of digrams (pairs of letters) and the known frequency of occurrence of digrams in the assumed language of the original message.

Cryptanalysis of four-square generally involves pattern matching on repeated monographs. This is only the case when the two plaintext matrices are known. A four-square encipherment usually uses standard alphabets in these matrices but it is not a requirement. If this is the case, then certain words will always produce single-letter ciphertext repeats. For instance, the word MI LI TA RY will always produce the same ciphertext letter in the first and third positions regardless of the keywords used. Patterns like these can be cataloged and matched against single-letter repeats in the ciphertext. Candidate plaintext can then be inserted in an attempt to uncover the ciphertext matrices.

Unlike the Playfair cipher, a four-square cipher will not show reversed ciphertext digraphs for reversed plaintext digraphs (e.g. the digraphs AB BA would encrypt to some pattern XY YX in Playfair, but not in four-square). This, of course, is only true if the two keywords are different. Another difference between four-square and Playfair which makes four-square a stronger encryption is the fact that double letter digraphs will occur in four-square ciphertext.

By all measures, four-square is a stronger system for encrypting information than Playfair. However, it is more cumbersome because of its use of two keys and preparing the encryption/decryption sheet can be time consuming. Given that the increase in encryption strength afforded by four-square over Playfair is marginal and that both schemes are easily defeated if sufficient ciphertext is available, Playfair has become much more common.

A good tutorial on reconstructing the key for a four-square cipher can be found in chapter 7, "Solution to Polygraphic Substitution Systems," of [http://www.umich.edu/~umich/fm-34-40-2/ Field Manual 34-40-2] , produced by the United States Army.

See also

* Topics in cryptography


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Four square (disambiguation) — Four square can mean: *Four square, a ball game for all ages *Four square cipher in classical cryptography *Four Square (company) is a division of Mars, Incorporated *Four Square supermarkets in New Zealand *Four Square Writing Method, an… …   Wikipedia

  • Two-square cipher — The Two square cipher is a manual symmetric encryption technique. It was developed to ease the cumbersome nature of the large encryption/decryption matrix used in the four square cipher while still being slightly stronger than the Playfair cipher …   Wikipedia

  • Square — may mean:Mathematics*Square (algebra), to multiply a number or other quantity by itself **Perfect square **Square matrix **Square number **Square root*Square (geometry), a polygon with four equal sides and angles **Unit square*Square wave, a… …   Wikipedia

  • Trifid cipher — In classical cryptography, the trifid cipher is a cipher invented around 1901 by Felix Delastelle, which extends the concept of the bifid cipher to a third dimension, allowing each symbol to be fractionated into 3 elements instead of two. That is …   Wikipedia

  • Bifid cipher — In classical cryptography, the bifid cipher is a cipher which combines the Polybius square with transposition, and uses fractionation to achieve diffusion. It was invented around 1901 by Felix Delastelle. Operation First, a mixed alphabet… …   Wikipedia

  • Playfair cipher — The Playfair cipher or Playfair square is a manual symmetric encryption technique and was the first literal digraph substitution cipher. The scheme was invented in 1854 by Charles Wheatstone, but bears the name of Lord Playfair who promoted the… …   Wikipedia

  • Classical cipher — A cipher is a means of concealing a message, where letters of the message are substituted or transposed for other letters, letter pairs, and sometimes for many letters. In cryptography, a classical cipher is a type of cipher that was used… …   Wikipedia

  • Substitution cipher — In cryptography, a substitution cipher is a method of encryption by which units of plaintext are replaced with ciphertext according to a regular system; the units may be single letters (the most common), pairs of letters, triplets of letters,… …   Wikipedia

  • Caesar cipher — The action of a Caesar cipher is to replace each plaintext letter with one fixed number of places down the alphabet. This example is with a shift of three, so that a B in the p …   Wikipedia

  • Book cipher — A book cipher is a cipher in which the key is some aspect of a book or other piece of text; books being common and widely available in modern times, users of book ciphers take the position that the details of the key is sufficiently well hidden… …   Wikipedia


Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.