Gas Electron Multiplier

Gas Electron Multiplier

The Gas Electron Multiplier (GEM) is a type of gaseous ionization detector used in nuclear and particle physics and radiation detection.

All gaseous ionization detectors are able to collect the electrons released by ionizing radiation, guiding them to a region with a large electric field, and thereby initiating an electron avalanche. The avalanche is able to produce enough electrons to create a current or charge large enough to be detected by electronics. In most ionization detectors, the large field comes from a thin wire with a positive high-voltage potential; this same thin wire collect the electrons from the avalanche and guides them towards the readout electronics. GEMs create the large electric field in a small holes in a thin polymer sheet; the avalanche occurs inside of these holes. The resulting electrons are ejected from the sheet, and a separate system must be used to collect the electrons and guide them towards the readout.

GEMs are one of the class of micropattern gas detectors; this class includes Micromegas, microstrip detectors, and other technologies.

History

GEMs were invented in 1997 in the Gas Detector Development Group at CERN by physicist Fabio Sauli.

Operation

Typical GEMs are constructed of 50-70 micrometre thick Kapton foil clad in copper on both sides. A photolithography and acid etching process makes 30-50 micrometre diameter holes through both copper layers; a second etching process extends these holes all the way through the kapton. The small holes can be made very regular and dimensionally stable. For operation, a voltage of 150-400 V is placed across the two copper layers, making large electric fields in the holes. Under these conditions, in the presence of appropriate gases, a single electron entering any hole will create an avalanche containing 100-1000 electrons; this is the "gain" of the GEM. Since the electrons exit the back of the GEM, a second GEM placed after the first one will provide an additional stage of amplification. Many experiments use double- or triple-GEM stacks to achieve gains of one million or more.

Operation of wire chambers typically involved only one voltage setting: the voltage on the wire provided both the drift field and the amplification field. A GEM-based detector requires several independent voltage settings: a drift voltage to guide electrons from the ionization point to the GEM, an amplification voltage, and an extraction/transfer voltage to guide electrons from the GEM exit to the readout plane. A detector with a large drift region can be operated as a time projection chamber; a detector with a smaller drift region operates as a simple proportional counter.

A GEM chamber can be read-out by simple conductive strips laid across a flat plane; the readout plane, like the GEM itself, can be fabricated with ordinary lithography techniques on ordinary circuit board materials. Since the readout strips are not involved in the amplification process, they can be made in any shape; 2-D strips and grids, hexagonal pads, radial/azimuthal segments, and other readout geometries are possible.

Uses

GEMs have been used in many types of particle physics experiments. One notable early user was the COMPASS experiment. GEM-based gas detectors have been proposed for components of the International Linear Collider, the STAR experiment at the Relativistic Heavy Ion Collider, and others. The advantages of GEMs, compared to multiwire proportional chambers, include: ease of manufacturing, since large-area GEMs can in principle be mass-produced, while wire chambers require labor-intensive and error-prone assembly; flexible geometry, both for the GEM and the readout pads; and suppression of positive ions, which was a source of field distortions in time-projection chambers operated at high rates. A number of manufacturing difficulties plagued early GEMs, including non-uniformity and short circuits, but these have to a large extent been resolved.

References

http://gdd.web.cern.ch/GDD/

http://cerncourier.com/cws/article/cern/27921


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Gas chromatography-mass spectrometry — (GC MS) is a method that combines the features of gas liquid chromatography and mass spectrometry to identify different substances within a test sample. Applications of GC MS include drug detection, fire investigation, environmental analysis,… …   Wikipedia

  • electron tube — noun electronic device consisting of a system of electrodes arranged in an evacuated glass or metal envelope • Syn: ↑tube, ↑vacuum tube, ↑thermionic vacuum tube, ↑thermionic tube, ↑thermionic valve • Hypernyms: ↑electronic device …   Useful english dictionary

  • Residual gas analyzer — A residual gas analyzer (RGA) is a small and usually rugged mass spectrometer, typically designed for process control and contamination monitoring in the semiconductor industry. Utilizing quadrupole technology, there exists two implementations,… …   Wikipedia

  • Environmental scanning electron microscope — Wool fibers imaged in an ESEM by the use of two symmetrical plastic scintillating backscattered electron detectors …   Wikipedia

  • Ionendetektor — Ein Teilchendetektor ist ein Messgerät zum Nachweisen bewegter Moleküle, Atome oder Elementarteilchen. Da mit Teilchendetektoren Teilchen mit äußerst gegensätzlichen Eigenschaften nachgewiesen werden, gibt es auch eine große Anzahl verschiedener… …   Deutsch Wikipedia

  • Spurdetektor — Ein Teilchendetektor ist ein Messgerät zum Nachweisen bewegter Moleküle, Atome oder Elementarteilchen. Da mit Teilchendetektoren Teilchen mit äußerst gegensätzlichen Eigenschaften nachgewiesen werden, gibt es auch eine große Anzahl verschiedener… …   Deutsch Wikipedia

  • Teilchendetektor — Ein Teilchendetektor ist ein Messgerät zum Nachweisen freier, bewegter Moleküle, Atome oder Elementarteilchen. Da mit Teilchendetektoren Teilchen mit äußerst gegensätzlichen Eigenschaften nachgewiesen werden, gibt es viele verschiedene Teilchen… …   Deutsch Wikipedia

  • GEM — is an acronym for:* Gas Electron Multiplier * Gender Empowerment Measure * Generable (sic) Enigmatic Matrix from the anime and manga My Otome (see List of My Otome terminology) * Generalized Empirical Method mdash; from Bernard Lonergan, also… …   Wikipedia

  • GEM — steht für: Gem (Automarke), eine britische Automobilmarke Abkürzung für geminal, in der Chemie wird das Präfix gem verwendet Abkürzung für eine generische Verkapselung von verschiedenen Datenpakettypen in der Netzwerktechnologie siehe Artikel… …   Deutsch Wikipedia

  • Gem — steht für: Gemeentemuseum Den Haag Grenoble Ecole de Management, Hochschule für Wirtschaft und Management in Grenoble Graphical Environment Manager, graphische Benutzeroberfläche von Digital Research Gender Empowerment Measure, Indikator der… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”