MiniGrail

MiniGrail

MiniGRAIL is an instrument that is designed to detect gravitational waves. The MiniGRAIL is the first such detector to use a spherical design. It is located at Leiden University in the Netherlands. The project is being managed by the Kamerlingh Onnes Laboratory.[1] A team from the Department of Theoretical Physics of the University of Geneva, Switzerland, is also heavily involved.

Gravitational waves are a type of radiation that is emitted by objects that have mass and are undergoing acceleration. The strongest sources of gravitational waves are expected to be compact objects such as neutron stars and black holes. This detector may be able to detect certain types of instabilities in rotating single and binary neutron stars, and the merger of small black holes or neutron stars.[2]

A spherical design has the benefit of being able to detect gravitational waves arriving from any direction, and it is sensitive to polarization.[3] When gravitation waves with frequencies around 3,000 Hz pass through the MiniGRAIL ball, it will vibrate with displacements on the order of 10-20 m.[4] For comparison, the cross-section of a single proton (the nucleus of a hydrogen atom), is 10-15 m (1 fm).[5]

To improve sensitivity, the detector was intended to operate at a temperature of 20 mK.[1] The original antenna for the MiniGRAIL detector was a 68 cm diameter sphere made of an alloy of copper with 6% aluminum. This sphere had a mass of 1,150 kg and resonated at a frequency of 3,250 Hz. It was isolated from vibration by seven 140 kg masses. The bandwidth of the detector was expected to be ±230 Hz.[2]

During the casting of the sphere, a crack appeared that reduced the quality to unacceptable levels. It was replaced by a 68 cm sphere with a mass of 1,300 kg. This was manufactured by ItalBronze in Brazil. The larger mass lowered the resonant frequencies by about 200 Hz.[6] The sphere is suspended from stainless steel cables to which springs and masses are attached to dampen vibrations. Cooling is accomplished using a dilution refrigerator.[7]

Tests at temperatures of 5 K showed the detector to have a peak strain sensitivity of 1.5 × 10-20 Hz at a frequency of 2942.9 Hz. Over a bandwidth of 30 Hz, the strain sensitivity was more than 5 × 10-20 Hz. This sensitivity is expected to improve by an order of magnitude when the instrument is operating at 50 mK.[3]

A similar detector named "Mario Schenberg" is being built in São Paulo, which will strongly increase the chances of detection by looking at coincidences.[8]

References

  1. ^ a b de Waard, A,; et al. (2003). "MiniGRAIL, the first spherical detector". Classical and Quantum Gravity 20: S143–S151. Bibcode 2003CQGra..20S.143D. doi:10.1088/0264-9381/20/10/317. 
  2. ^ a b Van Houwelingen, Jeroen (2002-06-24). "Development of a superconducting thin-film Nb-coil for use in the MiniGRAIL transducers". Leiden University. pp. 1–17. http://www.minigrail.nl/Student/Jeroen-report.pdf. Retrieved 2009-09-16. 
  3. ^ a b Gottardi, L.; De Waard, A.; Usenko, O.; Frossati, G.; Podt, M.; Flokstra, J.; Bassan, M.; Fafone, V. et al. (November 2007). "Sensitivity of the spherical gravitational wave detector MiniGRAIL operating at 5K". Physical Review D 76 (10): 102005.1–102005.10. Bibcode 2007PhRvD..76j2005G. doi:10.1103/PhysRevD.76.102005. 
  4. ^ Bruins, Eppo (2004-11-26). "‘Listen, two black holes are clashing!’". innovations-report. http://www.innovations-report.com/html/reports/physics_astronomy/report-36884.html. Retrieved 2009-09-16. 
  5. ^ Ford, Kenneth William (2005). The quantum world: quantum physics for everyone. Harvard University Press. p. 11. ISBN 067401832X. 
  6. ^ de Waard, A.; et al. (2005). "MiniGRAIL progress report 2004". Classical and Quantum Gravity 22: S215–S219. Bibcode 2005CQGra..22S.215D. doi:10.1088/0264-9381/22/10/012. 
  7. ^ de Waard, A.; et al. (March 2004). "Cooling down MiniGRAIL to milli-Kelvin temperatures". Classical and Quantum Gravity 21 (5): S465–S471. Bibcode 2004CQGra..21S.465D. doi:10.1088/0264-9381/21/5/012. 
  8. ^ Frajuca, Carlos; et al. (December 2005). "Resonant transducers for spherical gravitational wave detectors". Brazilian Journal of Physics 35 (4b): 1201–1203. Bibcode 2005BrJPh..35.1201F. doi:10.1590/S0103-97332005000700050. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • MiniGRAIL — MiniGRAIL  детектор гравитационных волн, расположенный в Голландии, в Университете Лейдена. Детектор представляет собой сферическую антенну, диаметром 68 см, сделанную из спла …   Википедия

  • MiniGrail — …   Википедия

  • Gravitationswellendetektor — Ein Gravitationswellendetektor ist ein Experiment, welches geringe Störungen der Raumzeit, Gravitationswellen, misst, welche von Albert Einsteins allgemeiner Relativitätstheorie vorhergesagt werden. Inhaltsverzeichnis 1 Komplikationen 2… …   Deutsch Wikipedia

  • Детектор гравитационных волн — (гравитационный телескоп)  устройство, предназначенное для регистрации гравитационных волн. Согласно ОТО, гравитационные волны, образующиеся, например, в результате слияния двух чёрных дыр где то во Вселенной, вызовут чрезвычайно слабое… …   Википедия

  • Гравитационная антенна — тип детектора гравитационных волн, основанный на определении механических напряжений, вызываемых в твёрдых телах возмущениями метрики пространства времени. Основные запущенные проекты по детектированию гравитационных волн: Проект Расположение… …   Википедия

  • Гравитационное излучение — Происхождение и эволюция гравитационных волн. Рисунок Гравитационная волна  предположительно существующее с точки зрения ОТО возмущение гравитационного поля, «рябь» ткани пространства времени, предположительно распространяющаяся со скоростью… …   Википедия

  • Mario Schenberg (Gravitational Wave Detector) — The Mario Schenberg (Gravitational Wave Detector, Antenna, or Brazilian Graviton Project[1]) is a spherical, resonant mass, gravitational wave detector run by the Physics Institute of the University of Sao Paulo. Similar to the Dutch run… …   Wikipedia

  • Laser Interferometer Space Antenna — For other uses of this acronym, see LISA (disambiguation). Laser Interferometer Space Antenna Artist s conception of LISA spacecraft Operator ESA, NASA Satellite of Sun The Laser Interfe …   Wikipedia

  • Joseph Weber — ethnicity = Jewish fields = Physicist workplaces = University of Maryland College Parknowrap|Institute for Advanced Study, PrincetonUS Navy Bureau of Ships alma mater = United States Naval Academy The Catholic University of America doctoral… …   Wikipedia

  • Gravitational wave — In physics, a gravitational wave is a fluctuation in the curvature of spacetime which propagates as a wave, traveling outward from a moving object or system of objects. Gravitational radiation is the energy transported by these waves. Important… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”