# Wald test

﻿
Wald test

The Wald test is a statistical test, typically used to test whether an effect exists or not. In other words, it tests whether an independent variable has a statistically significant relationship with a dependent variable.

Suppose an economist, who has data on social class and shoe size, wonders whether social class is associated with shoe size. Say &theta; is the average increase in shoe size for upper class people compared to middle class people: then the Wald test can be used to test whether &theta; is 0 (in which case social class has no association with shoe size) or non-zero (shoe size varies between social classes). Or, for a medical example, suppose smoking multiplies the risk of lung cancer by some number R: then the Wald test can be used to test whether "R" = 1 (i.e. there is no effect of smoking) or is greater (or less) than 1 (i.e. smoking alters risk).

A Wald test can be used in a great variety of different models including models for dichotomous variables and models for continuous variables. [Frank E Harrell, Jr. (2001) "Regression modelling strategies." Springer-Verlag, Sections 9.2, 10.5.]

Mathematical details

Under the Wald statistical test, named after Abraham Wald, the maximum likelihood estimate $hat heta$ of the parameter(s) of interest $heta$ is compared with the proposed value $heta_0$, with the assumption that the difference between the two will be approximately normal. Typically the square of the difference is compared to a chi-squared distribution. In the univariate case, the Wald statistic is

:$frac\left\{ \left( widehat\left\{ heta\right\}- heta_0 \right)^2 \right\}\left\{operatorname\left\{var\right\}\left(hat heta \right)\right\}$

which is compared against a chi-square distribution.

Alternatively, the difference can be compared to a normal distribution. In this case the test statistic is

:$frac\left\{widehat\left\{ heta\right\}- heta_0\right\}\left\{operatorname\left\{se\right\}\left(hat heta\right)\right\}$

where $operatorname\left\{se\right\}\left(widehat heta\right)$ is the standard error of the maximum likelihood estimate. A reasonable estimate of the standard error for the MLE can be given by $frac\left\{1\right\}\left\{sqrt\left\{I_n\left(MLE\right)$ , where $I_n$ is the Fisher information of the parameter.

In the multivariate case, a test about several parameters at once is carried out using a variance matrix [Frank E Harrell Jr (2001), "Regression modeling strategies", Springer-Verlag, Section 9.3.1] . A common use for this is to carry out a Wald test on a categorical variable by recoding it as several dichotomous variables.

Alternatives to the Wald test

The likelihood-ratio test can also be used to test whether an effect exists or not. Usually the Wald test and the likelihood ratio test give very similar conclusions (as they are asymptotically equivalent), but very rarely, they disagree enough to lead to different conclusions: the researcher finds him/herself asking, or being asked, why the p-value is significant when the confidence interval includes 0, or why the p-value is not significant when the confidence interval excludes 0. In this situation, first remember that statistical significance is always somewhat arbitrary, as it depends on an arbitrarily chosen significance level.

There are several reasons to prefer the likelihood ratio test above the Wald test [Frank E Harrell Jr (2001), "Regression modeling strategies", Springer-Verlag, Section 9.3.3] [David Collett, "Modelling survival data in medical research", Chapman & Hall] [Yudi Pawitan (2001), "In all likelihood", Oxford University Press] . One is that the Wald test can give different answers to the same question, according to how the question is phrased [Fears et al. (1996) "A reminder of the fallibility of the Wald statistic". The American Statistician 50:226-7.] . For example, asking whether R = 1 is the same as asking whether log R = 0; but the Wald statistic for R = 1 is not the same as the Wald statistic for log R = 0 (because there is in general no neat relationship between the standard errors of R and log R). Likelihood ratio tests will give exactly the same answer whether we work with R, log R or any other transformation of R. The other reason is that the Wald test uses two approximations (that we know the standard error, and that the distribution is chi-squared), whereas the likelihood ratio test uses one approximation (that the distribution is chi-squared).

Yet another alternative is the score test, which have the advantage that it can be formulated in situations where the variability is difficult to estimate; e.g. the Cochran-Mantel-Haenzel test is a score test [ Alan Agresti (2002), "Categorical Data Analysis", Wiley, p. 232 ] .

References

* [http://members.aol.com/jeff570/w.html Wald test] on the [http://members.aol.com/jeff570/mathword.html Earliest known uses of some of the words of mathematics]

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Wald-Test — Der Wald Test ist ein statistischer Test, der 1943 von Abraham Wald vorgestellt worden ist. Ist θ ein unbekannter Parameter in der Grundgesamtheit und θ0 ein vorgegebener Wert, so prüft er die Hypothesen: vs. . Das Problem ist, die Verteilung… …   Deutsch Wikipedia

• Wald-Test — Test zur Überprüfung von Hypothesen, der als eine Verallgemeinerung des ⇡ t Tests aufgefasst werden kann …   Lexikon der Economics

• Wald — is the German word for forest.urname* Abraham Wald (1902 ndash;1950), Hungarian mathematician of German descent * Carol Wald (1935 2000), American artist. * Charles F. Wald * Diane Wald * George Wald (1906 ndash;1997), American biologist and… …   Wikipedia

• Wald (Begriffsklärung) — Wald steht für: Wald, ein Ökosystem Waldgesellschaft, die Pflanzengesellschaft, die ein Gelände als Wald kennzeichnet Forst, ein Stück Waldland, eine waldbestandene Flur Wald (Graphentheorie), ein Graph, der aus einer Menge von Bäumen besteht… …   Deutsch Wikipedia

• Wald-Wolfowitz runs test — The runs test (also called Wald Wolfowitz test) is a non parametric test that checks a randomness hypothesis for a two valued data sequence. More precisely, it can be used to test the hypothesis that the elements of the sequence are mutually… …   Wikipedia

• Test de Wald — Le test de Wald est un test paramétrique économétrique dans l appellation vient du mathématicien hongrois Abraham Wald (31 octobre 1902 13 décembre 1950) avec une grande variété d utilisations. Chaque fois que nous avons une relation au sein ou… …   Wikipédia en Français

• Sequential probability ratio test — The sequential probability ratio test (SPRT) is a specific sequential hypothesis test, developed by Abraham Wald. [cite journal first=Abraham last=Wald title=Sequential Tests of Statistical Hypotheses journal=Annals of Mathematical Statistics… …   Wikipedia

• Abraham Wald — (* 31. Oktober 1902 in Kolozsvár (Klausenburg), im damaligen Ungarn; † 13. Dezember 1950 in Travancore, Indien) war ein deutschsprachiger, rumänisch US amerikanischer Mathematiker aus Siebenbürgen. Er gilt als einer der bedeutendsten Statistiker… …   Deutsch Wikipedia

• Abraham Wald — Infobox Scientist name = Abraham Wald box width = image width = caption = A young Wald birth date = birthdate|1902|10|31 birth place = Cluj Napoca, Hungary death date = death date and age|1950|12|13|1902|10|31 death place = Travancore, India… …   Wikipedia

• Chi-squared test — Chi square test is often shorthand for Pearson s chi square test. A chi square test, also referred to as chi squared test or χ2 test, is any statistical hypothesis test in which the sampling distribution of the test statistic is a chi square… …   Wikipedia